Parallel Programming
- Some concepts and methods
- Threading vs. Multiprocessing
- Processing package
- Other approaches
- clustering, multi nodes, ...
- Loadbalancing, scheduling
As a simple application we use a program, which calculates the sum of prime numbers below a given integer n. We paralize over n in {100000,100100, ....}.
As "refernce code" we take an implementation in C :
1 /* File: sum_primes_seq.c
2 Author: Heinrich Widmann (based on python version of Vitalii Vanovschi
3 from Parallel Python Software: http://www.parallelpython.com )
4 Desc: This program demonstrates sequential computation implemented
5 as C code
6 It calculates the sum of prime numbers below a given integer
7 */
8
9 #include <time.h>
10 int main(int argc, char *argv[]) {
11 clock_t tot_start, tot_end;
12 double tot_time_spent, time_spent;
13 int sum, n, i ;
14 int j, njobs;
15
16 njobs=8;
17 if (argc > 1) {
18 njobs=atoi( (argv[1]));
19 }
20
21 printf("Start processing with %d jobs :\n",njobs);
22 tot_start = clock();
23
24 // Run njobs jobs
25 for (j = 0; j < njobs; j++) {
26 n=100000+(j*100);
27 sum=sum_primes(n);
28 }
29 tot_end = clock();
30 tot_time_spent = (double)(tot_end - tot_start) / CLOCKS_PER_SEC;
31 printf("Time elapsed: %12.4f s \n", tot_time_spent);
32 }
33
34
35 int sum_primes(unsigned long int n) {
36 // Calculates sum of all primes below given integer n
37 int i;
38 int sum;
39 clock_t start, end;
40
41 sum = 0;
42 start = clock();
43 for (i = 0; i < n; i++) {
44 if (isPrime(i)) {
45 sum += i;
46 }
47 }
48 end = clock();
49 // printf("Sum of primes below %lu is %lu and lasted %8.4f seconds \n", n, sum, (double)(end - start) / CLOCKS_PER_SEC);
50 return sum;
51 }
52
53 int isPrime(int num) {
54 int x;
55 if (num < 2) {
56 return 0;
57 }
58
59 for (x = 2; x*x < num; ++x) {
60 if (num % x == 0) {
61 return 0;
62 }
63 }
64 return 1;
65 }
Here the code of the sequential implementation in python : (Hint by Alex : Avoid loops as below (while i < max ...) and replace by an array ... !!!)
1 #!/usr/bin/python
2 # File: sum_primes_seq.py
3 # Author: Heinrich Widmann (based on parallel version of Vitalii Vanovschi
4 # from Parallel Python Software: http://www.parallelpython.com )
5 # Description: This program demonstrates sequential computation and
6 # calculates the sum of prime numbers below a given integer
7
8 import math, sys, time
9
10 def isprime(n):
11 """Returns True if n is prime and False otherwise"""
12 if not isinstance(n, int):
13 raise TypeError("argument passed to is_prime is not of 'int' type")
14 if n < 2:
15 return False
16 if n == 2:
17 return True
18 max = int(math.ceil(math.sqrt(n)))
19 i = 2
20 while i <= max:
21 if n % i == 0:
22 return False
23 i += 1
24 return True
25
26 def sum_primes(n):
27 """Calculates sum of all primes below given integer n"""
28 return sum([x for x in xrange(2,n) if isprime(x)])
29
30 print """Usage: python sum_primes_seq.py [njobs]
31 njobs are the number of jobs (calculate sum of primes up to N=10000+(njobs*100)) excecuted
32 """
33
34 if len(sys.argv) > 1:
35 njobs = int(sys.argv[1])
36 else:
37 njobs = 8
38
39 result = sum_primes(100)
40
41 print "Sum of primes below 100 is", result
42
43 start_time = time.time()
44
45 # The following submits njobs jobs and then retrieves the results
46 for i in xrange(njobs):
47 input=10000+i*100
48 job_start_time = time.time()
49 print "Sum of primes below", input, "is", sum_primes(input), "and lasts", time.time() - job_start_time, "s"
50 print "Time elapsed: ", time.time() - start_time, "s"