Pandas
1 import numpy as np
2 import pandas as p
3 import Nio
4
5 nc1 = Nio.open_file('10147-precip.nc') # hamburg
6 nc2 = Nio.open_file('10015-precip.nc') # helgoland
7
8 time1 = nc1.variables['time'][:]
9 time2 = nc2.variables['time'][:]
10
11 rain1 = nc1.variables['rainfall_rate_hour'][:]
12 rain2 = nc2.variables['rainfall_rate_hour'][:]
13
14
15 # plot data
16 plot(rain1, 'g', rain2, 'b')
17
18 # Timestamps shall be python dates
19 dates1 = num2date(epoch2num(time1))
20 dates2 = num2date(epoch2num(time2))
21
22 # Indexed arrays - p.Series
23 ds1 = p.Series(rain1, index = dates1)
24 ds2 = p.Series(rain2, index = dates2)
25
26 # Pandas is using numpy.na representation of not-a-number,
27 # while Nio returns masked arrays
28 # Many basic array operations are valid for pandas Series
29 ds1 = np.where(ds1<0, nan, ds1)
30 ds2 = np.where(ds2<0, nan, ds2)
31
32 # built-in plotting functions
33 ds1.plot()
34 ds2.plot()
35
36 # newer pandas version can drop NaN's,
37 # current one can only fill,
38 # otherwise drop by hand (hint: nan is not equal to nan :)
39 ds1=ds1[ds1==ds1]
40 ds2=ds2[ds2==ds2]