Modis-Daten:
http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=AERONET_Hornsund.2009072.terra.250m
http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=AERONET_Hornsund.2009072&altdates
Satellitenbilder (Aqua Modis) Fram Straße : Modis Images
Bilder als Dateianhänge
- 30.03.2003 10:40
- 31.03.2009 11:35
Spektrum erzeugen mit der Funktion pylab.psd. Spektrum über eine Zeile und plot mit basemap (noch ohne Helligkeitsdaten):
1 import Image
2 from pylab import *
3 from mpl_toolkits.basemap import Basemap
4 import numpy as np
5
6 def load_img(filename):
7 im=Image.open(filename)
8 return resize(fromstring(im.tostring(),uint8),(im.size[1],im.size[0],3))
9
10
11 filename='AERONET_Hornsund.2009072.aqua.250m.jpg'
12
13 a=load_img(filename)
14
15 north=80.2363
16 south=73.7612
17 east=40.4156
18 west=-9.3026
19
20 [yn,xn,dum]=shape(a)
21
22 # make grid
23 x=linspace(west,east,xn)
24 y=linspace(north,south,yn)
25
26 [lons,lats] = meshgrid(x,y)
27
28
29 start,stop,line=500,1500,1550
30 test=a[line,start:stop,0]
31
32 # power spectrum
33 figure(1)
34 psd(test,NFFT=512,Fs=250,Fc=0,detrend=mlab.detrend_linear,window=mlab.window_hanning, noverlap=0)
35
36
37
38 # plot location of profile
39 figure(2)
40 m = Basemap(width=2400000,height=1600000,projection='stere',lat_ts=77.0,lon_0=15.0,lat_0=77.0,resolution='l')
41
42 m.drawcoastlines()
43 m.fillcontinents(color='gray',lake_color='aqua')
44 m.drawmapboundary(fill_color='aqua')
45
46 m.drawmeridians(np.arange(0,360,5),labels=[1,0,0,1])
47 m.drawparallels(np.arange(-90,90,5),labels=[0,1,0,1])
48
49 xm,ym=m(lons,lats)
50
51 #m.imshow(xm,ym,a[:,:,0]) # geht nicht!
52
53 x1,y1=m(x[start],y[line])
54 x2,y2=m(x[stop],y[line])
55 m.plot([x1,x2],[y1,y2],'-r')
56
57
58
59 show()
Noch keine genaue Aussage über die Zellengröße machbar!
1 from scipy import *
2 import Image
3 def profmean(img,y1=0,ylen=5,x1=0,xlen=512):
4 """
5
6
7 """
8 y2=y1+ylen
9 xlist=range(x1,x1+xlen)
10 #print xlist
11 p=[]
12 for x in xlist:
13 p.append(a[y1:y2,x,0].mean())
14 print p
15 return p
16
17 def load_img(filename):
18 im=Image.open(filename)
19 return resize(fromstring(im.tostring(),uint8),(im.size[1],im.size[0],3))
20
21 filename='AERONET_Hornsund.2009072.terra.250m.jpg'
22
23 a=load_img(filename)
24
25 print profmean(a)