Terminology

	Sea Ice Fact Sheet	lunaar @ Junx. vet
Zones]	Towindayy . more, ice town (M12): open water processes dominate	, perminial : Knoughout the
	· suce zone (St): concentrated shearing of formation	· seasonal: seasonal
opening	> courtal (> Archie)	
	· lead: frachne (parage (too worde ho jump) · hitas: this ice (< 10 cm), buds · new ite: _ fract ice freendly formed	
type	· fart ice: affached to coart / obriet (little horit. moren.) · young ice: transition shage between with - 1st year ice	(30 cm - 2 cm)
	· old ice = 2nd year, outh-year (>2m)	

Phasen Diagram

Gibbs phase rule:		
$\mathbf{F} = \mathbf{C} + 1 - \mathbf{P}$		
F: Degrees of freedom		
P: Number of phases		
C: Number of components		
Above $-21,2^{\circ}C : F = 1$		

Below $-21, 2^{\circ}C : F = 0$

Remote sensing

```
spanial resolution:

J = k \frac{\lambda \cdot h}{L} \text{ being the } \lambda = \frac{c}{f}
J = k \frac{\lambda \cdot h}{L} \text{ bediamater}
J = k \frac{\lambda \cdot h}{L
```

Sea ice drift

Sea ice covers 5% of the Arctic Ocean and 8% of the Antarctic and is driven by winds and currents.

There are two major drift systems in the arctic basin - the Transpolar Drift Stream which transports ice from the Laptev Sea and the East Siberian Sea across the pole towards Fram Strait, and the Beaufort Gyre a clockwise circulation in the north of Alaska.

Sea ice in the Antarctic rotates in a west-to-east direction around the continent with a clockwise major drift system in the Weddell Sea which transports ice along the Antarctic Peninsula allowing extensive multiyear ice to form.

Arctic

Antarctic

Sy/ 35 D 3 0 R surface haloclin and convection

Temperatur and salinity profiles

3) Sea Ice growth and equilibrium thickness

Experimental equations are more accurate than the theoretical one. Ice thickness, H:

$$H^2 + 5.1H = 6.7\Theta \tag{0.0.1}$$

$$H = 1.33\Theta^{0.58} \tag{0.0.2}$$

$$\Theta = \int_0^t (T_f - T_a) \,\mathrm{d}t. \tag{0.0.3}$$

 Θ has to be in [°C days] Freezing temperature: T_f=-2°C Air temperature: T_a H is in [cm] Conductive heat flux: F_c at the surface (0) and at the bottom (H)

Simple energy balance model for sea ice growth: Linear temperature gradient for thin ice

Air
$$T_a$$
 $F_c(0) = F_c(H)$ Thin Ice H $F_c(0)$ $F_c=k/H(T_a-T_f)$ Water $T_f = -2^{\circ}C$ F_w $L=333 \text{ kJ/kg}$
 $\rho=910 \text{ kg/m}^3$

$$H^2=(2k\Theta)/(\rho L)$$
 Theoretical eqn.

Next take into account that the surface temperature is warmer than the air temperature, and include a snow layer:

$$H^{2} + \left(\frac{2\kappa}{\kappa_{s}}H_{s} + \frac{2\kappa}{C}H\right)H = \frac{2\kappa}{\rho L}\Theta$$

$$(0.0.4)$$

$$H^2 + (13.1H_s + 16.8)H = 12.9\Theta \tag{0.0.5}$$

H² + (13.1 H_s + 16.8) H = 12.9 Θ

Polynyas: open windows to the atmosphere and ocean

I salt or ice factories ! A lot of brine & salt is reject to the ocean.

Coastal polynyas

tynamically driven by arrents-or

form where wind advects pack ice oway from coast (f.e. katabatic Winds in AA!)

> sea water at temp. close to the freezing point is directly exposed to neg. heat flux => resultant formation of new ice

- new ice is advected away from the coast as fast as it forms
- called ,, latent heat p." : head loss goes into ice growth
- grow without limits, they don't go back to coast and connect again

open ocean polynyas

- driven by upwelling of warm deep ocean water

called "sensible heat p."; atmospheric heart loss from these p. go into cooling of water column

Prominent polonyas: Weddell Sea polynya, Mand Rise - and Cosmonaut Sea p., Copen ocean) (open ocean)

-

Many polynyas in shelf areas! Storfjorden polynya, Lapter Sea polynya (coastal p.) (coastal p.)

Most coastal p. in NH + SH, 1 open Oceanp. in NH, 3 open ocean p. in SH

Ice production AA: 10 m per season } in a polynya A: 5 m per season } in a polynya

Sediment transport through Polynyas coastal poly: > freezing at all depths during initiation of ice formation >> nucleating ice crystalls adhere to roles and sediments on the bottom forming, anchor ice " => polynyos serve as a source of observed sediments in the polar ice

- if amount of anchor ice increases, buoyancy of sediment/ice mixture lighs material to surface THE set Laples-rives sediments carried by the rives into the delte can be incorporated, into prazil ice - also Langmuir-circulation mix bottom sediments into water columny where it cooperates with frazil ice and carried to surface =) So probs from From Stratt can have adiments which origin from Siberian Bidogical importance of polynyas -breathing holes for marine mammals (white walks, walruses, seals) -for Winter Bird colonies - site of humans settlements listorical - for overwinker survival of archic species - feeding areas for whales and migration routes for whales (earlies ice free than rest of pack ice) Influence on the ocean - large heat sources to atmosphere powesful ice + brine factories (=> denses water contributes to A, AA & Morth
 AA open ocean p. cool warm upwelled deep exean water pacific water masses)
 AA open ocean p. cool warm upwelled deep exean water
 dends to mollification of intermediate-depth water into CBW Polynya Pease (1987) model Balance between advection of sea ice away from the coast and area averaged ice production rate V: CTYI CONTRACT STATIS T @ FYI driven offshore by a cold wind Dolynya width stabilizes when production balances ice Velocity 3 frazil is produced in the teurbulent boundary layer and gloats to the surface Polynya size strongly depends (frazil is rapidly swept lownwind and collects along the On air temp. and only moderately depends on wind speed for winds Franking gloes - " I frazil solidifies into area of new ice with thicken to greaks than 10 m/s.