Sea ice 2

Lecture, exercises and practical by Jun.-Prof. Dr. Lars Kaleschke

Description of the course

The lecture will cover the thermodynamic coupling between the sea ice, the ocean, and the atmosphere. It is designed for master-level students with moderate knowledge in numerics, scientific programming, and sea ice physics. A conceptual model of the Arctic will be derived and simulation results will be analysed. For didactical reasons the model will be developed from scratch and kept as simple as possible, but complex enough to learn about the basic principles of the thermodynamic interaction between the ocean, the ice and the atmosphere for climatic, oceanographic and meteorological studies.

Acknowledgments

This lecture is based on content taken from a lecture Sea ice modeling by Aike Beckmann (Univ. Hamburg, Summer 2009) and a short course on Ice-Ocean Modeling and Data Assimilation which was conducted by Frank Kauker and Michael Karcher (Univ. Bremen, 6-7 December 2006).

Lesson 1 - Ocean mixed layer and radiative forcing without sea ice and atmosphere

Introduction and references for download

Scenario

mixed_layer.png

Research questions

Compute the time evolution of the ocean mixed layer temperature T_ml(t) for different h_ml, initial temperatures T_ml(t=0), and short wave insolation Q_SW.

Estimate the typical time scale for stationarity and select appropriate time step delta_t for model integration.

Change insolation after the model has reached stationarity.

Source code

/Gruppe1

Simulation results

Literature

Maykut, G.A. & N. Untersteiner, 1971: Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res.,76, 1550-1575.

Semtner, A., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr, 6, 379-389.

Hibler III, W.D., 1979: A dynamic-thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815-846.

Parkinson, C.L. & W.M. Washington, 1979: A large-scale numerical model of sea ice., J. Geophys. Res., 84, 311-337.