Parallel Programming
with Python

Heinrich Widmann
LES Python Seminar 2012
08.11.2012

Presenter
Presentation Notes
The subject today is Parrallel Programming with Python

Overview

e Why?

e How?

* Methods and approaches (within Python)
e Some general issues

* Coding of a simple test application

e Some Results

* Discussion

widmann@dkrz.de

Presenter
Presentation Notes
Hereby I focus more on general concepts and strategies than on concrete implementation of realistic applications.
First I say some words about the motivation to parallize your python code and then
I describe a roadmap or consider the steps in general to achieve a parallized code
To get more concrete I‘ll address some methods and approaches and some issues occuring along the way.
Next I show how to implement and code a simple application these methods and let them run.
Finally I‘ll present the results of these tests, which for shure raise a lot of questions to discuss

mailto:widmann@dkrz.de
mailto:widmann@dkrz.de

Why parallelisation ?

Improve performance (only speed ?)

Parallel design, coding and implementation
may be more convenient and less complex

Efficient usage of compute (and
memory/storage) resources

Better scaling over processes/CPUs and nodes
... but things can as well get worse ...

widmann@dkrz.de

mailto:widmann@dkrz.de
mailto:widmann@dkrz.de

How to parallise

Examine your application for

— Ability to paralise

— Appropriate level/kind of parallelisation

First analyse and divide your code in “parallisable” chunks
Choose method and “level” (OS, Python, cleint/server, ...)

1. sequential code on 1 CPU - parallel code run on n CPUs

2. Execution on 1-2 CPU on 1 node = multi nodes,
clustering

Avoid interruptions, locks, bottlenecks etc.

Note process and input/output dependencies
Scheduling, load balancing, ..., usage of memory, ...
Check that results are reproducable

idmann@dkrz.de

mailto:widmann@dkrz.de
mailto:widmann@dkrz.de

Here : only computing
(forget 1/0 and data (dependencies))

From sequentialto —=> parallel execution
of processes P1, P2, ...

JUER) P31 P32

Heinrich Widmann
widmann@dkrz.de
LES Python Seminar 2012

mailto:widmann@dkrz.de
mailto:widmann@dkrz.de

GIL or no GIL

(threading vs. processes)

GIL = Global Interpreter Lock

* enshures that only 1 thread runs in the interpreter at
once

» Limits performance by forcing serial execution
» (lock(T1)-> release(T1)->lock(T2)-> ...
e But GIL

e simplifies maintainance and management (e.g. of memory
and process comm.) by the Python Interpreter

e |eads in most cases not to significant difference in
performance, because thread management shifted to
kernel level

Thread Execution Model

® With the GIL, you get cooperative multitasking

/O /o Vo 1o /o
Thread | =—t-— e e D o e EEE
run run
Thread 2 — — - SN I
run
Thread 3 — —— e e

AR AR :
releae acquire release acquire

GIL GIL GIL GIL
® When a thread is running, it holds the GIL

® GIL released on I/O (read,write,send,recv,etc.)

Threading scheme

HCPUZIHCPU3IHCPU4I

CPUs

Threads

realeased locked locked

Processing scheme

CPUs I

OS/Kernel
Memory

Processes

Methods

e C (sequential reference code)

e Python
— Sequential
— Multiprocessing
— Threading (joined/not joined)
— ParallelPython (ncpus)
— Cython

Further methods
(not addressed here)

(vectorisung in) Numpy
Jython

Gearman

PyCloud

PYPy

python cluster

... and a lots more ...

C [and/or ... ?]

Reference code

Often Cis already a good choice (in terms of
performance)

Code : sum_primes.c

Compile :
— S gec [-O ??] -0 sum_primes.o sum_primes.c

[what’s about other lang.’s as fortran, C++,
etc.]

Threading

comes with GIL
All threads work on the same memory space
N>1 threads slower than 1 thread implementation

Explicit lock/release management must be ,,self
done”

But some advantages (at least in Python) :
— allows fast developement

— results in nicer, structured code, which is easier to
maintain

Multiprocessing

e Similar to threading API, but

 Only process based

» no GIL
» transparent for developers

e Because processes are copied
» starting of processes is slower
» more memory is required

» process synchronisation is more complex and
tedious

multiprocessing Pool

multiproc.py
p = multiprocessing.Pool()
po = p.map_async(fn, args)

result = po.get() # for all po
objects

join the result items to make full result

How much memory moves?

sys.getsizeof(0+0)) # bytes
250,000 complex numbers by default
How much RAM used in ?

With 8 chunks - how much memory per
chunk?

multiprocessing uses pickle, max
32MB pickles

Process forked, data pickled

ParallelPython pp

client/server based approach
pp starts own server processes

This works on single nodes, SMPs and on
clusters

— if on all nodes a pp server is running

parallel excecution with discrete processes

Client/server model

Platform Platform
Fequest
(Ciert g (Gemer
Feply
Fequest
Feply

Metwork

Cython

Own (but python similar) programming
language

Easy and fast developement (compared to C)
Easy parallelisation (OpenMP used)
Very performant

Meanwhile one of the favorite choices, used
in more and more new projects ...

Cython work flow

e Code:

— sum_primes_cython.pyx (your Cython code)
» sum_primes_cython.c (generated C-code)

 Convert to and compile C-code:

— S python setup_prim_cython.py build ext —
inplace

e Run:

— S python run_sum_primes_cython.py

Test application ,,sum primes”

e Sum of all prime numbers < N,
— Parallise over nin N ={100000,100100, ... }

 Implementation as nested loop (recursive

function call)
— Loopl : nin N (parallize !!)
e sum_primes(n) {
Loop2 : xin (2,...,sqrt(n))
If isprime(x) => sum+=x

return sum

}
 Already on this level.good coding is essential |

widmann@dkrz.de

mailto:widmann@dkrz.de
mailto:widmann@dkrz.de

Coding

¢ 9 https://wiki.zmmaw.de/lehre/PythonCourse/PythonLES/Parallel Programming

e Tests done

— on VM of my Windows laptop
e 2 CPUs (hyperthreaded)

— On lizard cluster
e 24 CPUs available
e Tests in progress ...

https://wiki.zmaw.de/lehre/PythonCourse/PythonLES/Parallel_Programming

Performance of different methods
on 2 CPU laptop (8 jobs)

2,5

=== Cython
/ =>4=Sequential Py
1,5 #=Threading par
=@=PP ncpul
e=f== PP ncpu=2
1 Multiprocessing
. /

5,0
4,5
4,0
3,5
3,0
2,5
2,0
1,5
1,0
0,5
0,0

Pertormance (3 processes)
on multi-CPU systems
... to continue ...

Wall clock time [s] over # of workers (CPUs)

N ——Sequential

\ -=-PP on laptop (2 CPUs)

\. PP on lizard (24 CPUs)

Future trends

Very-multi-core is obvious

Cloud based systems getting easier
CUDA-like APU systems are inevitable
disco looks interesting, also blaze
Celery, R3 are alternatives

numpush for local & remote numpy
Auto parallelise numpy code?

Discussion

e Parallelisation
— needs a lot of analysis, design and evaluation work

— difficult to find the appropriate approach for your
specific application and available resources

— Leads sometimes not to really better performance
— But sometimes to other benefits and insights

	Parallel Programming�with Python
	Overview
	Why parallelisation ?
	How to parallise
	Here : only computing�(forget I/O and data (dependencies))
	GIL or no GIL�(threading vs. processes)
	Slide Number 7
	Threading scheme
	Processing scheme
	Methods
	Further methods�(not addressed here)
	C [and/or … ?]
	Threading
	Multiprocessing
	multiprocessing Pool
	How much memory moves?
	ParallelPython pp
	Client/server model
	Cython
	Cython work flow
	Test application „sum_primes“
	Coding
	Performance of different methods�on 2 CPU laptop (8 jobs)
	Performance (8 processes)�on multi-CPU systems�… to continue …
	Future trends
	Discussion

