
Parallel Programming
with Python

widmann@dkrz.de

Heinrich Widmann
LES Python Seminar 2012

08.11.2012

Presenter
Presentation Notes
The subject today is Parrallel Programming with Python

Overview
• Why?
• How?
• Methods and approaches (within Python)
• Some general issues
• Coding of a simple test application
• Some Results
• Discussion

Heinrich Widmann
widmann@dkrz.de

LES Python Seminar 2012

Presenter
Presentation Notes
Hereby I focus more on general concepts and strategies than on concrete implementation of realistic applications.
First I say some words about the motivation to parallize your python code and then
I describe a roadmap or consider the steps in general to achieve a parallized code
To get more concrete I‘ll address some methods and approaches and some issues occuring along the way.
Next I show how to implement and code a simple application these methods and let them run.
Finally I‘ll present the results of these tests, which for shure raise a lot of questions to discuss

mailto:widmann@dkrz.de
mailto:widmann@dkrz.de

Why parallelisation ?

• Improve performance (only speed ?)
• Parallel design, coding and implementation

may be more convenient and less complex
• Efficient usage of compute (and

memory/storage) resources
• Better scaling over processes/CPUs and nodes
• … but things can as well get worse …

Heinrich Widmann
widmann@dkrz.de

LES Python Seminar 2012

mailto:widmann@dkrz.de
mailto:widmann@dkrz.de

How to parallise
• Examine your application for

– Ability to paralise
– Appropriate level/kind of parallelisation

• First analyse and divide your code in ‘’parallisable’’ chunks
• Choose method and ‘’level’’ (OS, Python, cleint/server, …)

1. sequential code on 1 CPU  parallel code run on n CPUs
2. Execution on 1-2 CPU on 1 node  multi nodes,

clustering
• Avoid interruptions, locks, bottlenecks etc.
• Note process and input/output dependencies
• Scheduling, load balancing, …, usage of memory, …
• Check that results are reproducable Heinrich Widmann

widmann@dkrz.de
LES Python Seminar 2012

mailto:widmann@dkrz.de
mailto:widmann@dkrz.de

Here : only computing
(forget I/O and data (dependencies))

P1 P2 P3 P1 P1.1 P1.2

P2 P2.1 P2.1

P3 P3.1 P3.2

From sequential to  parallel execution
of processes P1, P2, …

P1.1 P2.1 P3.1

Heinrich Widmann
widmann@dkrz.de

LES Python Seminar 2012

mailto:widmann@dkrz.de
mailto:widmann@dkrz.de

GIL or no GIL
(threading vs. processes)

GIL = Global Interpreter Lock
• enshures that only 1 thread runs in the interpreter at

once
 Limits performance by forcing serial execution
 (lock(T1)-> release(T1)->lock(T2)-> …

• But GIL
• simplifies maintainance and management (e.g. of memory

and process comm.) by the Python Interpreter
• leads in most cases not to significant difference in

performance, because thread management shifted to
kernel level

Threading scheme

T1 Threads T2 T1

OS/Kernel

CPU1 CPU2 CPU3 CPUs CPU4

GIL

realeased locked locked

Processing scheme

P1 Processes P2 P3

OS/Kernel
 Memory

CPU1 CPU2 CPU3 CPUs CPU4

MEMP1 MEMP2 MEMP3

Methods

• C (sequential reference code)
• Python

– Sequential
– Multiprocessing
– Threading (joined/not joined)
– ParallelPython (ncpus)
– Cython

Further methods
(not addressed here)

• (vectorisung in) Numpy
• Jython
• Gearman
• PyCloud
• PyPy
• Ipython cluster
• … and a lots more …

C [and/or … ?]

• Reference code
• Often C is already a good choice (in terms of

performance)
• Code : sum_primes.c
• Compile :

– $ gcc [-O ??] -o sum_primes.o sum_primes.c

• [what‘s about other lang.‘s as fortran, C++,
etc.]

Threading
• comes with GIL
• All threads work on the same memory space
• N>1 threads slower than 1 thread implementation
• Explicit lock/release management must be „self

done“
• But some advantages (at least in Python) :

– allows fast developement
– results in nicer, structured code, which is easier to

maintain

Multiprocessing

• Similar to threading API, but
• Only process based
 no GIL
 transparent for developers

• Because processes are copied
 starting of processes is slower
 more memory is required
 process synchronisation is more complex and

tedious

multiprocessing Pool

• # multiproc.py

• p = multiprocessing.Pool()

• po = p.map_async(fn, args)

• result = po.get() # for all po
objects

• join the result items to make full result

Ian@IanOzsvald.com @IanOzsvald -
EuroSciPy 2012

How much memory moves?

• sys.getsizeof(0+0j) # bytes

• 250,000 complex numbers by default
• How much RAM used in q?
• With 8 chunks - how much memory per

chunk?
• multiprocessing uses pickle, max

32MB pickles
• Process forked, data pickled

Ian@IanOzsvald.com @IanOzsvald -
EuroSciPy 2012

ParallelPython pp

• client/server based approach
• pp starts own server processes
• This works on single nodes, SMPs and on

clusters
– if on all nodes a pp server is running

• parallel excecution with discrete processes

Client/server model

Cython

• Own (but python similar) programming
language

• Easy and fast developement (compared to C)
• Easy parallelisation (OpenMP used)
• Very performant
• Meanwhile one of the favorite choices, used

in more and more new projects …

Cython work flow

• Code :
– sum_primes_cython.pyx (your Cython code)
 sum_primes_cython.c (generated C-code)

• Convert to and compile C-code:
– $ python setup_prim_cython.py build_ext –

inplace

• Run :
– $ python run_sum_primes_cython.py

Test application „sum_primes“
• Sum of all prime numbers < N,

– Parallise over n in N ={100000,100100, … }

• Implementation as nested loop (recursive
function call)
– Loop1 : n in N (parallize !!)

• sum_primes(n) {
 Loop2 : x in (2,…,sqrt(n))

 If isprime(x) => sum+=x
 return sum
}

• Already on this level good coding is essential !

Heinrich Widmann
widmann@dkrz.de

LES Python Seminar 2012

mailto:widmann@dkrz.de
mailto:widmann@dkrz.de

Coding

•  https://wiki.zmaw.de/lehre/PythonCourse/PythonLES/Parallel_Programming

• Tests done
– on VM of my Windows laptop

• 2 CPUs (hyperthreaded)

– On lizard cluster
• 24 CPUs available
• Tests in progress …

https://wiki.zmaw.de/lehre/PythonCourse/PythonLES/Parallel_Programming

Performance of different methods
on 2 CPU laptop (8 jobs)

0

0,5

1

1,5

2

2,5

3

1 2 3 4 5 6 7 8

C

Cython

Sequential Py

Threading par

PP ncpu1

PP ncpu=2

Multiprocessing

Performance (8 processes)
on multi-CPU systems

… to continue …

Future trends

• Very-multi-core is obvious
• Cloud based systems getting easier
• CUDA-like APU systems are inevitable
• disco looks interesting, also blaze
• Celery, R3 are alternatives
• numpush for local & remote numpy
• Auto parallelise numpy code?

Ian@IanOzsvald.com @IanOzsvald -
EuroSciPy 2012

Discussion

• Parallelisation
– needs a lot of analysis, design and evaluation work
– difficult to find the appropriate approach for your

specific application and available resources
– Leads sometimes not to really better performance
– But sometimes to other benefits and insights

	Parallel Programming�with Python
	Overview
	Why parallelisation ?
	How to parallise
	Here : only computing�(forget I/O and data (dependencies))
	GIL or no GIL�(threading vs. processes)
	Slide Number 7
	Threading scheme
	Processing scheme
	Methods
	Further methods�(not addressed here)
	C [and/or … ?]
	Threading
	Multiprocessing
	multiprocessing Pool
	How much memory moves?
	ParallelPython pp
	Client/server model
	Cython
	Cython work flow
	Test application „sum_primes“
	Coding
	Performance of different methods�on 2 CPU laptop (8 jobs)
	Performance (8 processes)�on multi-CPU systems�… to continue …
	Future trends
	Discussion

