#acl AdminGroup:read,write,delete,revert EditorGroup:read,write,delete,revert All:read #format wiki #language en #pragma section-numbers off = Basic Python = This lesson includes the basic Python language. No modules have to be imported, except for the extended data types where a {{{numpy array}}} is used. <> == Built-in keywords == Python built-in keywords {{{ help> keywords and else import raise assert except in return break exec is try class finally lambda while continue for not yield def from or del global pass elif if print }}} == Built-in types == === Python built-in numeric types === There are four distinct numeric types: * plain integers {{{int}}} * long integers {{{long}}} * floating point numbers {{{float}}} * complex numbers {{{complex}}} In addition, Booleans are a subtype of plain integers === Boolean === Boolean (logical) types * True * False === Operations === {{{ x + y sum of x and y x - y difference of x and y x * y product of x and y x / y quotient of x and y x // y (floored) quotient of x and y x % y remainder of x / y -x x negated +x x unchanged abs(x) absolute value or magnitude of x int(x) x converted to integer long(x) x converted to long integer float(x) x converted to floating point complex(re,im) a complex number with real part re, imaginary part im. im defaults to zero c.conjugate() conjugate of the complex number c x ** y x to the power y }}} Boolean Operations: {{{and}}}, {{{or}}}, {{{not}}} {{{ x or y if x is false, then y, else x x and y if x is false, then x, else y not x if x is false, then True, else False }}} === Comparisons === {{{ < strictly less than <= less than or equal > strictly greater than >= greater than or equal == equal != not equal is object identity }}} === Sequence types === * String {{{str}}} * List {{{list}}} * Tuple {{{tuple}}} === Operations === {{{ x in s True if an item of s is equal to x, else False x not in s False if an item of s is equal to x, else True s + t the concatenation of s and t s[i] i'th item of s s[i:j] slice of s from i to j s[i:j:k] slice of s from i to j with step k len(s) length of s min(s) smallest item of s max(s) largest item of s }}} == Variables, assignment == The assignment statement = creates new variables and gives them values {{{ a=2 l=9**1000L S='Hello' f=1e5 }}} == Lists and tuples == * Lists {{{[]}}} are mutable sequences of values * Tuples {{{()}}} can not be changed (immutable) {{{ In [5]: a=[1,2,3] In [6]: b=(1,2,3) In [7]: a[0] Out[7]: 1 In [8]: b[0] Out[8]: 1 In [9]: a[0]=4 In [10]: a Out[10]: [4, 2, 3] In [11]: b[0]=4 --------------------------------------------------------------------------- exceptions.TypeError }}} == Indexing and slicing == * Indices {{{[]}}} select elements of variables * Indices start from zero * {{{x[a:b]}}} selects a slice of elements from variable x {{{ In [1]: a=range(10) In [2]: a Out[2]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] In [3]: a[0:4] Out[3]: [0, 1, 2, 3] In [4]: a[4:] Out[4]: [4, 5, 6, 7, 8, 9] In [5]: a[:4] Out[5]: [0, 1, 2, 3] In [6]: a[:-1] Out[6]: [0, 1, 2, 3, 4, 5, 6, 7, 8] In [7]: s='Hello world' In [8]: s[:5] Out[8]: 'Hello' In [9]: a=tuple(range(10)) In [10]: a[0:4] Out[10]: (0, 1, 2, 3) }}} === List built-in functions (methods) === * {{{L.append(object)}}} -- append object to end * {{{L.count(value)}}} -> integer -- return number of occurrences of value * {{{L.extend(iterable)}}} -- extend list by appending elements from the iterable * {{{L.index(value, [start, [stop]])}}} -> integer -- return first index of value * {{{L.insert(index, object)}}} -- insert object before index * {{{L.pop([index])}}} -> item -- remove and return item at index (default last) * {{{L.reverse()}}} -- reverse *IN PLACE* * {{{L.sort()}}} -- sort *IN PLACE* {{{ In [72]: L=['C','A','B'] In [73]: L.sort() In [74]: L Out[74]: ['A', 'B', 'C'] In [75]: L.pop() Out[75]: 'C' In [76]: L Out[76]: ['A', 'B'] In [77]: L.insert(1,'C') In [78]: L Out[78]: ['A', 'C', 'B'] }}} Nested data structures {{{ In [84]: a=range(10) In [85]: b=range(0,10,2) In [86]: b Out[86]: [0, 2, 4, 6, 8] In [87]: c=[a,b] In [88]: c Out[88]: [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 2, 4, 6, 8]] In [91]: c[0] Out[91]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] In [92]: c[1] Out[92]: [0, 2, 4, 6, 8] In [93]: c[0][0:4] Out[93]: [0, 1, 2, 3] In [94]: c[1][0:4] Out[94]: [0, 2, 4, 6] }}} == Dictionary == * A dictionary is like a list, but more general. * In a list, the indices have to be integers; in a dictionary they can be (almost) any type. * {{{d={} }}} creates empty dictionary * {{{ d[key]=value }}} add a key, value pair to dictionary * {{{ d.keys() }}} returns list of keys {{{ In [95]: D={} In [96]: D['a']=range(10) In [97]: D['b']=range(0,10,2) In [98]: D Out[98]: {'a': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [0, 2, 4, 6, 8]} In [99]: D['a'] Out[99]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] In [100]: D.keys() Out[100]: ['a', 'b'] }}} == Loops == * Looping over a list is done for the {{{ for }}} statement * {{{ enumerate() }}} returns an enumerated object {{{ In [106]: a=['Hund','Katze','Maus'] In [108]: for i in a: .....: print i .....: Hund Katze Maus In [111]: for i,j in enumerate(a): .....: print i,j .....: 0 Hund 1 Katze 2 Maus }}} == Control statements == * Conditions can be checked with {{{if-else}}} statement * {{{ if }}} condition: indented block * {{{ else: }}} {{{ In [116]: if a==1: .....: print 'a=1' .....: else: .....: print 'a != 1' .....: a=1 }}} == Modules == There are many ways to import modules. The resulting namespaces are different * Import module SciPy: {{{import scipy}}} * List SciPy subpackages {{{help(scipy)}}} or {{{scipy.info(scipy)}}} * Import SciPy subpackage n-dimensional image package {{{import scipy.ndimage}}} * List ndimage functions {{{help(scipy.ndimage)}}} * Help on ndimage function laplace {{{help(scipy.ndimage.laplace)}}} * Import SciPy module into local namespace {{{from scipy import *}}} * Import SciPy subpackage ndimage in namespace ndi {{{import scipy.ndimage as ndi}}} * Write source for this object to output {{{scipy.source(ndi.laplace)}}} * Reload a (changed) module {{{dreload(module name)}}} = Variable names = Allowed names for identifier (name of variable or function): * Any sequence of alphabetical character, number, or underline character {{{_}}} * First symbol has to be a character * Case sensitive * Not a python built-in keyword == Name space == The Python interpreter maps the name of an identifier in the active name space. The active name space depends on the active code block (module, function). The identifier can be local or global with respect to the active code block. {{{#!python def func(a): a=a+1 # a is visibly only within func() print a b=func(1) print b print a # This will throw a NameError exception }}} {{{#!python import scipy scipy.pi # pi is in the name space of scipy from scipy import pi pi # pi is in the active name space from scipy import * pi # all identifiers of scipy are in the active name space del(pi) # Deletes pi from the active name space reset # ipython function to delete all identifiers }}} = Built-in datatypes = == Scalar == * Plain integer: {{{9}}} * Long integer: {{{9**99, 1L}}} * Hex integer: {{{0x10}}} * Floating point: {{{0.1}}} * Exponential floating point: {{{1e-3}}} * Complex: {{{3+2j}}} === Casting === * int() * long() * float() * complex() * str() == Sequences == === String === {{{#!python s1='Hello world' s2="Hello world" s1==s2 s='"' s="'" }}} == Dictionary == {{{#!python D={1:'one',2:'two','one':1,'two':2} D['one'] D[1] }}} = Extended data types = == Array == NumPy/SciPy provides a multidimensional '''array''' data type. An array can hold arbitrary Python objects but usually they are used for N-dimensional numeric data types. We will learn more about arrays in the next chapter. === Array creation === * {{{empty((d1,d2),dtype)}}} returns uninitialized array of shape d1,d2. * {{{zeros((d1,d2),dtype)}}} returns array of shape d1,d2 filled with zeros * {{{ones((d1,d2),dtype)}}} returns array of shape d1,d2 filled with ones * {{{array(object,dtype)}}} returns an array from an object, e.g. a list * {{{dtype}}} fundamental C data type e.g. uint8, int16, int64, float32, float64 === Array indexing === * {{{A[y,x]}}} returns (y,x) element of the array * {{{A[:,x]}}} returns all elements of the y-dimension at x * {{{A[y1:y2,x]}}} * {{{A[:,:]}}} returns a copy of two dimensional array A * {{{A[:,:,0]}}} returns the first sub-image of a 3-dimensional array = Functions = In this section we first get to know about the built-in functions and after this we will learn how to define our own functions. == Built-in Functions == The Python interpreter has a number of functions built into it that are always available. * [[http://docs.python.org/library/functions.html|Built-in Functions]] Important builtin-functions that are needed for the exercise are highlighted in the next sections. === File === The [[http://docs.python.org/lib/bltin-file-objects.html|file object]] can be used for reading and writing plain text as well as unformatted binary data. The following code writes a message in the file with the name ''out.txt'', reads and print the data {{{ #!python file('out.txt','w').write('Hello File') # Write a string to a file print file('out.txt').read() # Read from file and print the results }}} * {{{write()}}} writes a string to the file * {{{read()}}} reads complete file * {{{read(N)}}} reads N bytes * {{{readlines()}}} reads the file with linebreaks * {{{readline()}}} reads only the next line === Range === Range is a versatile function to create lists containing arithmetic progressions. {{{ range([start], stop[, step]) }}} === Type === {{{type(object)}}} returns the type of an object. == Function with one argument == {{{ In [124]: def quadrat(x): .....: return x**2 .....: In [125]: quadrat(2) Out[125]: 4 }}} == Function with variable number of arguments == {{{ In [126]: def printargs(*args): .....: for arg in args: .....: print arg .....: In [127]: printargs(a) [1, 2, 3] In [128]: printargs(a,range(4)) [1, 2, 3] [0, 1, 2, 3] }}} == Function with variable number of keywords == {{{ In [131]: def printkeys(**kw): .....: for k in kw.keys(): .....: print k,kw[k] .....: In [132]: printkeys(key1=10,key2='Hallo') key2 Hallo key1 10 }}} == Function with functions as arguments (expert) == Functions can be passed to functions as arguments. {{{#!python from scipy import sin,pi def func(x,f): return f(x) print func(pi/2,sin) }}} === eval(), apply() === In Matlab or IDL the passing of functions to functions works only with a detour using {{{feval()}}} or {{{Call_function()}}} * [[http://groups.google.com/group/comp.lang.idl-pvwave/browse_thread/thread/acf94d8f621caf95/47decec322cf5094?q=function+parameters&rnum=4|IDL passing functions to functions]] Of course, this way is possible in Python as well using the {{{eval()}}} or {{{apply()}}} function. {{{#!python apply(sin,(pi/2,)) f='sin' x=pi/2.0 eval(f+'('+str(x)+')') }}} In Fortran it is also possible to pass functions as arguments but with quite some overhead: * http://wingolog.org/software/fortran/tips-tricks.html = Lambda expressions (expert) = Lambda expressions are (anonymous) one line functions {{{#!python l=lambda x: x**2-1 l(4) }}} = Mapping (expert) = Similar as {{{apply()}}} works with one argument one can call {{{map()}}} with a sequence {{{#!python map(len,['Always','look','on','the','bright','side','of','life']) [6, 4, 2, 3, 6, 4, 2, 4] }}} The following example shows the combined usage of a lambda expression {{{#!python map(lambda s:len(s)+1,['Always','look','on','the','bright','side','of','life']) [7, 5, 3, 4, 7, 5, 3, 5] }}} = Variable Scope (expert) = The scope of an identifier refers to the variable visibility. Variables inside a function have a local scope. Global variables can be declared and used but you should be very careful. {{{#!python def bad_style(x): # Name space of bad_style global y y=x z=x return x # Name space of __main__ x,y,z=2,2,2 x=bad_style(1) print 'x=',x,'y=',y,'z=',z # y is changed! }}} = A shell inside the shell (expert) = For debugging purposes it is sometimes useful to investigate local variables at some points. The following example demonstrates a feature of ipython: {{{#!python from IPython.Shell import IPShellEmbed ips=IPShellEmbed() def spam(a): b=a+' Spam!' ips() print b }}} {{{ In [1]: from spam import spam In [2]: whos Interactive namespace is empty. In [3]: spam('Hello') # Now we are in the ips() call In [1]: whos Variable Type Data/Info ---------------------------- a str Hello b str Hello Spam! In [2]: exit() Do you really want to exit ([y]/n)? y Hello Spam! # We are now again in top level In [4]: whos Interactive namespace is empty. }}} = Exercises = == Range == What is the corresponding {{{range()}}} expression for the following lists? {{{ [1, 3, 5, 7, 9] [5, 8, 11, 14, 17] [19, 18, 17, 16, 15, 14, 13] }}} == Data types == {{{ D=dict([('b',1),('c',2)]) }}} Please specify the data types: * D is a ... * 'b' is a ... * 1 is a ... * ('b',1) is a ... * [('b',1),('c',2)] is a ... == Data structures == {{{#!python D={'A':array(range(10)),'B':array(range(10))+1} }}} * Which keys contains the dictionary {{{D}}} * Get the keys with the method {{{D.keys()}}} * Display all values of {{{D}}} using the method {{{.values()}}} * Display array {{{A}}} * Display the elements {{{3:6}}} of arrays {{{B}}} * Set this elements to 0 * Insert a new key-values pair {{{C:array(range(0,10,-1))}}} into {{{D}}} == Files and Strings == Read in this [[attachment:Python_in_the_Scientific_World.txt|textfile]] and count the number of occurrence of the string ''Python''. Use the functions/methods {{{open}}}, {{{read}}}, {{{count}}}.