Size: 3116
Comment:
|
Size: 6378
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
Die Besprechung ueber das Vorgehen ihrer Aufgaben ergab: | === Arbeitsgruppe 1: Freibord === Die Aufgabe der Arbeitsgruppe bestand darin, die I |
Line 3: | Line 5: |
die Transformation in polarstereographische Koordinaten und der nachfolgende Uebergang zu den Bildpunkten von ASAR Eckpunkte und Aufloseung des ASAR-Bildes variieren frei -> allgemeingueltiges Programm fuer den Uebergang der Output erfolgt als Vektor in der Form x, y, Freiboardhoehe; eventuell die Floatangabe |
'''Daten''' |
Line 7: | Line 7: |
Der Gruppe stand ein ASAR-Satellitenbild zur Verfügung, das ein Auschnitt des Weddellmeeres zeigt und ein ICESat-Datensatz, der die geographischen Positionen (lon, lat) und die an diesen Punkten gemessene Freibordhoehe (cm) für einen Ueberflug quer durch den ASAR-Ausschnitt beinhaltet. {{attachment:}} '''Methodik''' Theorie zur Koordinatentransformation: Eine affine Abbildung ist eine lineare Koordinatentransformation, die die elementaren Transformationen Translation, Rotation, Dilatation, Stauchung und Scherung umfasst. Sie kann durch Vektoraddition und Matrixmultiplikation ausgedrueckt werden: {{{#!latex \[\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}[c]{ccc} a_{\rm{11}} & a_{\rm{12}}\\a_{\rm{21}} & a_{\rm{22}}\end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} t_x \\ t_y \end{array}\right)\] }}} Homogene Koordinaten: {{{#!latex \[\left(\begin{array}{c} x' \\ y' \\ 1 \end{array}\right) = \left(\begin{array}[c]{ccc} a_{\rm{11}} & a_{\rm{12}} & t_x \\ a_{\rm{21}} & a_{\rm{22}} & t_y \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ 1 \end{array}\right)\] }}} Für drei nichtkollineare Punkte ergibt sich damit folgendes Gleichungssystem: Bestimmung der Transformationskoeffizienten für drei nichtkollineare Punkte: Bestimmung der Transformationskoeffizienten für mehr als drei nichtkollineare Punkte (Methode der kleinsten Quadrate): (für mehr Informationen siehe B. Jähne, Digitale Bildverarbeitung, Kapitel 10.4) Arbeitsschritte: Die Gruppe hat Programme bzw. Funktionen erarbeitet, die folgendes tun: * Einlesen der ICESat-Datei und umrechnen der geographischen Koordinaten des Ueberfluges in polarstereographische Koordinaten. * Die Eckpunkte des ASAR-Bildes, die von der Arbeitsgruppe 0 in geographischen Koordinaten übergeben wurden, werden ebenfalls in polarstereographische Koordinaten umgerechnet * Die Koordinatentransformation wird so durchgeführt, dass man als Ergebnis den ICESat-Datensatz als normierte Bildkoordinaten erhaelt. Dazu werden zunaechst die vier ASAR-Eckpunkte in normierte Bildkoordinaten gebracht und anschließend die ICESat-Daten auf dasselbe Koordiantensystem transformiert. * Als Endergebnis wird eine Matrix erzeugt, die die Messpositionen des ICESat-Ueberfluges im ASAR-Auschnitt in Bildkoordinaten und die zugehörigen Freibordhöhen enthält. '''Ergebnisse''' (Output, Statistik) '''Diskussion''' |
|
Line 14: | Line 58: |
import string | from read_icesat import * from coord_transform import * from scipy import * |
Line 16: | Line 62: |
def fit_freeboard_ASAR(filename1,filename2,resolution): """filename1: ASAR data file, filename2: freeboard data file, resolution: data resolution""" |
def fit_freeboard_ASAR(filename1,filename2): """filename1: ASAR data file, filename2: freeboard data file creates new coordinate system defined by corners of ASAR image and selects freeboard values within ASAR image box returns an array containing normalized image coordinates and corresponding freeboard values: [x_coordinate, y_coordinate, freeboardheight(cm)]""" |
Line 20: | Line 69: |
lat1,lon1,lat2,lon2,lat3,lon3,lat4,lon4=read_asar_corners(filename1) | ASAR=array(read_asar_corners(filename1)) ASAR_p=zeros(8) for k in arange(0,7,2): #computing polarstereographic coordinates ASAR_p[k:k+2]=mapll(ASAR[k],ASAR[k+1],sgn) A=coord_transformation(ASAR_p) #computing transformation matrix A for coordinate #transformation into image coordinates # reading freeboard data and computing geographic into polarstereographic coordinates ICESAT_p,fbh=read_icesat(filename2,sgn) #fbh are measured freeboard heights in cm # calculating new coordinates for freeboard data x_neu=[] y_neu=[] for x,y in zip(ICESAT_p[0],ICESAT_p[1]): x_neu.append(dot(array([A[0,0],A[0,1]]),array([x,y]))+A[0,2]) y_neu.append(dot(array([A[1,0],A[1,1]]),array([x,y]))+A[1,2]) x_n=array(x_neu) y_n=array(y_neu) fbh_n=array(fbh) x_n_limited=clip(x_n,0.,1.) x_indices=nonzero(x_n==x_n_limited) x_xind=x_n[x_indices] y_xind=y_n[x_indices] fbh_xind=fbh_n[x_indices] |
Line 22: | Line 96: |
ASAR_1=[lat1,lon1] ASAR_2=[lat2,lon2] ASAR_3=[lat3,lon3] ASAR_4=[lat4,lon4] |
y_n_limited=clip(y_xind,0.,1.) y_indices=nonzero(y_xind==y_n_limited) x_bild=x_xind[y_indices] y_bild=y_xind[y_indices] fbh_bild=fbh_xind[y_indices] |
Line 27: | Line 103: |
ASAR_1p=mapll(ASAR_1[0],ASAR_1[1],sgn) #computing polarstereographic coordinates ASAR_2p=mapll(ASAR_2[0],ASAR_2[1],sgn) ASAR_3p=mapll(ASAR_3[0],ASAR_3[1],sgn) ASAR_4p=mapll(ASAR_4[0],ASAR_4[1],sgn) |
---- /!\ '''Edit conflict - other version:''' ---- |
Line 32: | Line 105: |
X=int(abs(ASAR_2p[0]-ASAR_1p[0])/resolution) #image size in pixel Y=int(abs(ASAR_4p[1]-ASAR_1p[1])/resolution) |
---- /!\ '''Edit conflict - your version:''' ---- |
Line 35: | Line 107: |
---- /!\ '''End of edit conflict''' ---- x_y_fbh=array([x_bild,y_bild,fbh_bild]) return x_y_fbh }}} '''coord_transform.py''' {{{#!python from scipy import linalg as la def coord_transformation(ASAR_p): |
|
Line 36: | Line 120: |
y00,x00,y01,x01,y02,x02,y03,x03=int(ASAR_1p[1]),int(ASAR_1p[0]),int(ASAR_4p[1]),int(ASAR_4p[0]),int(ASAR_3p[1]),int(ASAR_3p[0]),int(ASAR_2p[1]),int(ASAR_2p[0]) | y00,x00,y01,x01,y02,x02,y03,x03=int(ASAR_p[1]),int(ASAR_p[0]),int(ASAR_p[7]),int(ASAR_p[6]),int(ASAR_p[5]),int(ASAR_p[4]),int(ASAR_p[3]),int(ASAR_p[2]) |
Line 44: | Line 128: |
Faktor1=dot(P1,transpose(P0)) Faktor2=inverse(dot(P0,transpose(P0))) A=dot(Faktor1,Faktor2) # Transformation matrix |
Faktor1=dot(P1,la.transpose(P0)) Faktor2=la.inverse(dot(P0,la.transpose(P0))) A=dot(Faktor1,Faktor2) # Transformation matrix return A }}} |
Line 48: | Line 134: |
# reading freeboard data lon=[] lat=[] fbh=[] datei = open (filename2, 'r') line=datei.readline() k=-1 while line!="": k=k+1 data=string.split(line) lon.append(float(data[0])) lat.append(abs(float(data[1]))) fbh.append(float(data[2])) line=datei.readline() |
'''read_icesat.py''' |
Line 63: | Line 136: |
polar=mapll(array(lat),array(lon),sgn) | {{{#!python # reading freeboard data |
Line 65: | Line 139: |
# calculating new coordinates for freeboard data x_neu=[] y_neu=[] for x,y in zip(polar[0],polar[1]): x_neu.append(dot(array([A[0,0],A[0,1]]),array([x,y]))+A[0,2]) y_neu.append(dot(array([A[1,0],A[1,1]]),array([x,y]))+A[1,2]) |
import string from geo_polar import * from scipy import io |
Line 72: | Line 143: |
# cutting off non-corresponding data values m=-1 index_vec=[] for xn,yn in zip(x_neu,y_neu): m=m+1 if xn<=1. and xn >=0. and yn<=1. and yn >=0.: index_vec.append(m) x_bild=[] y_bild=[] fbh_bild=[] for i in index_vec: x_bild.append(x_neu[i]) y_bild.append(y_neu[i]) fbh_bild.append(fbh[i]) x_y_fbh=array([x_bild,y_bild,fbh_bild]) return x_y_fbh |
def read_icesat(filename,sgn): data=io.read_array(filename) polar=mapll(data[:,1],data[:,0],sgn) fbh=data[:,2] return polar,fbh |
Line 94: | Line 150: |
Die benötigten Module polar_projection.py und read_asar.py sind auf der Seite zu finden. | ---- /!\ '''Edit conflict - other version:''' ---- }}} ---- /!\ '''Edit conflict - your version:''' ---- ---- /!\ '''End of edit conflict''' ---- Die benötigten Module polar_projection.py und read_asar.py sind auf der Seite der Arbeitsgruppe 0 [[AG0_ASAR_Einlesen]] zu finden. '''fbh_bildkoordinaten_test.py''' Zum Testen hängt man an das obige Programm folgende Zeilen an: {{{#!python filename1='ASA_IMP_1PNDPA20060617_043346_000000162048_00362_22460_2136.N1' filename2='LonLatFre_1706_6.xyz' ergebnis=fit_freeboard_ASAR(filename1,filename2) }}} {{attachment.schemabild2.jpg}} |
Arbeitsgruppe 1: Freibord
Die Aufgabe der Arbeitsgruppe bestand darin, die I
Daten
Der Gruppe stand ein ASAR-Satellitenbild zur Verfügung, das ein Auschnitt des Weddellmeeres zeigt und ein ICESat-Datensatz, der die geographischen Positionen (lon, lat) und die an diesen Punkten gemessene Freibordhoehe (cm) für einen Ueberflug quer durch den ASAR-Ausschnitt beinhaltet.
Methodik
Theorie zur Koordinatentransformation:
Eine affine Abbildung ist eine lineare Koordinatentransformation, die die elementaren Transformationen Translation, Rotation, Dilatation, Stauchung und Scherung umfasst. Sie kann durch Vektoraddition und Matrixmultiplikation ausgedrueckt werden:
latex error! exitcode was 2 (signal 0), transscript follows:
Homogene Koordinaten:
latex error! exitcode was 2 (signal 0), transscript follows:
Für drei nichtkollineare Punkte ergibt sich damit folgendes Gleichungssystem:
Bestimmung der Transformationskoeffizienten für drei nichtkollineare Punkte: Bestimmung der Transformationskoeffizienten für mehr als drei nichtkollineare Punkte (Methode der kleinsten Quadrate):
(für mehr Informationen siehe B. Jähne, Digitale Bildverarbeitung, Kapitel 10.4)
Arbeitsschritte:
Die Gruppe hat Programme bzw. Funktionen erarbeitet, die folgendes tun:
- Einlesen der ICESat-Datei und umrechnen der geographischen Koordinaten des Ueberfluges in polarstereographische Koordinaten.
- Die Eckpunkte des ASAR-Bildes, die von der Arbeitsgruppe 0 in geographischen Koordinaten übergeben wurden, werden ebenfalls in polarstereographische Koordinaten umgerechnet
- Die Koordinatentransformation wird so durchgeführt, dass man als Ergebnis den ICESat-Datensatz als normierte Bildkoordinaten erhaelt. Dazu werden zunaechst die vier ASAR-Eckpunkte in normierte Bildkoordinaten gebracht und anschließend die ICESat-Daten auf dasselbe Koordiantensystem transformiert.
- Als Endergebnis wird eine Matrix erzeugt, die die Messpositionen des ICESat-Ueberfluges im ASAR-Auschnitt in Bildkoordinaten und die zugehörigen Freibordhöhen enthält.
Ergebnisse
(Output, Statistik)
Diskussion
fbh_bildkoordinaten.py
1 from polar_projection import *
2 from read_asar import *
3 from read_icesat import *
4 from coord_transform import *
5 from scipy import *
6
7 def fit_freeboard_ASAR(filename1,filename2):
8 """filename1: ASAR data file, filename2: freeboard data file
9 creates new coordinate system defined by corners of ASAR image and selects freeboard values within ASAR image box
10 returns an array containing normalized image coordinates and corresponding freeboard values:
11 [x_coordinate, y_coordinate, freeboardheight(cm)]"""
12
13 sgn=-1 #Antarctica
14 ASAR=array(read_asar_corners(filename1))
15 ASAR_p=zeros(8)
16 for k in arange(0,7,2): #computing polarstereographic coordinates
17 ASAR_p[k:k+2]=mapll(ASAR[k],ASAR[k+1],sgn)
18
19 A=coord_transformation(ASAR_p) #computing transformation matrix A for coordinate
20 #transformation into image coordinates
21
22 # reading freeboard data and computing geographic into polarstereographic coordinates
23 ICESAT_p,fbh=read_icesat(filename2,sgn) #fbh are measured freeboard heights in cm
24
25 # calculating new coordinates for freeboard data
26 x_neu=[]
27 y_neu=[]
28 for x,y in zip(ICESAT_p[0],ICESAT_p[1]):
29 x_neu.append(dot(array([A[0,0],A[0,1]]),array([x,y]))+A[0,2])
30 y_neu.append(dot(array([A[1,0],A[1,1]]),array([x,y]))+A[1,2])
31 x_n=array(x_neu)
32 y_n=array(y_neu)
33 fbh_n=array(fbh)
34
35 x_n_limited=clip(x_n,0.,1.)
36 x_indices=nonzero(x_n==x_n_limited)
37 x_xind=x_n[x_indices]
38 y_xind=y_n[x_indices]
39 fbh_xind=fbh_n[x_indices]
40
41 y_n_limited=clip(y_xind,0.,1.)
42 y_indices=nonzero(y_xind==y_n_limited)
43 x_bild=x_xind[y_indices]
44 y_bild=y_xind[y_indices]
45 fbh_bild=fbh_xind[y_indices]
46
47
48 ---- /!\ '''Edit conflict - other version:''' ----
49
50 ---- /!\ '''Edit conflict - your version:''' ----
51
52
53 ---- /!\ '''End of edit conflict''' ----
54 x_y_fbh=array([x_bild,y_bild,fbh_bild])
55
56 return x_y_fbh
coord_transform.py
1 from scipy import linalg as la
2
3 def coord_transformation(ASAR_p):
4 # polarstereographic coordinate system
5 y00,x00,y01,x01,y02,x02,y03,x03=int(ASAR_p[1]),int(ASAR_p[0]),int(ASAR_p[7]),int(ASAR_p[6]),int(ASAR_p[5]),int(ASAR_p[4]),int(ASAR_p[3]),int(ASAR_p[2])
6 # new coordinate system with normalized coordinates
7 y10,x10,y11,x11,y12,x12,y13,x13=0,0,1,0,1,1,0,1
8
9 # calculating transformation matrix:
10 P0=array([[x00, x01, x02, x03],[y00,y01,y02,y03],[1.0,1.0,1.0,1.0]])
11 P1=array([[x10, x11, x12, x13],[y10,y11,y12,y13],[1.0,1.0,1.0,1.0]])
12
13 Faktor1=dot(P1,la.transpose(P0))
14 Faktor2=la.inverse(dot(P0,la.transpose(P0)))
15 A=dot(Faktor1,Faktor2) # Transformation matrix
16 return A
read_icesat.py
Edit conflict - other version:
}}}
Edit conflict - your version:
End of edit conflict
Die benötigten Module polar_projection.py und read_asar.py sind auf der Seite der Arbeitsgruppe 0 AG0_ASAR_Einlesen zu finden.
fbh_bildkoordinaten_test.py
Zum Testen hängt man an das obige Programm folgende Zeilen an: