Differences between revisions 2 and 24 (spanning 22 versions)
Revision 2 as of 2008-07-09 09:17:16
Size: 3008
Editor: NinaMaass
Comment:
Revision 24 as of 2008-07-11 10:46:30
Size: 6378
Editor: NinaMaass
Comment:
Deletions are marked like this. Additions are marked like this.
Line 1: Line 1:
Die Besprechung ueber das Vorgehen ihrer Aufgaben ergab: === Arbeitsgruppe 1: Freibord ===

Die Aufgabe der Arbeitsgruppe bestand darin, die I
Line 3: Line 5:
  die Transformation in polarstereographische Koordinaten und der nachfolgende Uebergang zu den Bildpunkten von ASAR
  Eckpunkte und Aufloseung des ASAR-Bildes variieren frei -> allgemeingueltiges Programm fuer den Uebergang
  der Output erfolgt als Vektor in der Form x, y, Freiboardhoehe; eventuell die Floatangabe
'''Daten'''

Der Gruppe stand ein ASAR-Satellitenbild zur Verfügung, das ein Auschnitt des Weddellmeeres zeigt und ein ICESat-Datensatz, der die geographischen Positionen (lon, lat) und die an diesen Punkten gemessene Freibordhoehe (cm) für einen Ueberflug quer durch den ASAR-Ausschnitt beinhaltet.

{{attachment:}}

 
'''Methodik'''
 
Theorie zur Koordinatentransformation:

Eine affine Abbildung ist eine lineare Koordinatentransformation, die die elementaren Transformationen Translation, Rotation, Dilatation, Stauchung und Scherung umfasst. Sie kann durch Vektoraddition und Matrixmultiplikation ausgedrueckt werden:
{{{#!latex
\[\left(\begin{array}{c} x' \\ y' \end{array}\right) =
\left(\begin{array}[c]{ccc} a_{\rm{11}} & a_{\rm{12}}\\a_{\rm{21}} & a_{\rm{22}}\end{array}\right)
\left(\begin{array}{c} x \\ y \end{array}\right)
+
\left(\begin{array}{c} t_x \\ t_y \end{array}\right)\]
}}}
Homogene Koordinaten:
{{{#!latex
\[\left(\begin{array}{c} x' \\ y' \\ 1 \end{array}\right) =
\left(\begin{array}[c]{ccc} a_{\rm{11}} & a_{\rm{12}} & t_x \\ a_{\rm{21}} & a_{\rm{22}} & t_y \\ 0 & 0 & 1 \end{array}\right)
\left(\begin{array}{c} x \\ y \\ 1 \end{array}\right)\]
}}}
Für drei nichtkollineare Punkte ergibt sich damit folgendes Gleichungssystem:

Bestimmung der Transformationskoeffizienten für drei nichtkollineare Punkte:
Bestimmung der Transformationskoeffizienten für mehr als drei nichtkollineare Punkte (Methode der kleinsten Quadrate):

(für mehr Informationen siehe B. Jähne, Digitale Bildverarbeitung, Kapitel 10.4)
Line 8: Line 38:
Arbeitsschritte:
Line 9: Line 40:
fbh_bildkoordinaten.py Die Gruppe hat Programme bzw. Funktionen erarbeitet, die folgendes tun:
 * Einlesen der ICESat-Datei und umrechnen der geographischen Koordinaten des Ueberfluges in polarstereographische Koordinaten.
 * Die Eckpunkte des ASAR-Bildes, die von der Arbeitsgruppe 0 in geographischen Koordinaten übergeben wurden, werden ebenfalls in polarstereographische Koordinaten umgerechnet
 * Die Koordinatentransformation wird so durchgeführt, dass man als Ergebnis den ICESat-Datensatz als normierte Bildkoordinaten erhaelt. Dazu werden zunaechst die vier ASAR-Eckpunkte in normierte Bildkoordinaten gebracht und anschließend die ICESat-Daten auf dasselbe Koordiantensystem transformiert.
 * Als Endergebnis wird eine Matrix erzeugt, die die Messpositionen des ICESat-Ueberfluges im ASAR-Auschnitt in Bildkoordinaten und die zugehörigen Freibordhöhen enthält.
  
'''Ergebnisse'''

(Output, Statistik)
  
'''Diskussion'''


'''fbh_bildkoordinaten.py'''
Line 12: Line 56:
from geo_polar import * from polar_projection import *
Line 14: Line 58:
import string from read_icesat import *
from coord_transform import *
from scipy import *
Line 16: Line 62:
def fit_freeboard_ASAR(filename1,filename2,resolution):
    """filename1: ASAR data file, filename2: freeboard data file, resolution: data resolution"""
def fit_freeboard_ASAR(filename1,filename2):
    """filename1: ASAR data file, filename2: freeboard data file
       creates new coordinate system defined by corners of ASAR image and selects freeboard values within ASAR image box
       returns an array containing normalized image coordinates and corresponding freeboard values:
       [x_coordinate, y_coordinate, freeboardheight(cm)]"""
Line 20: Line 69:
    lat1,lon1,lat2,lon2,lat3,lon3,lat4,lon4=read_asar_corners(filename1)     ASAR=array(read_asar_corners(filename1))
    ASAR_p=zeros(8)
    for k in arange(0,7,2): #computing polarstereographic coordinates
        ASAR_p[k:k+2]=mapll(ASAR[k],ASAR[k+1],sgn)

    A=coord_transformation(ASAR_p) #computing transformation matrix A for coordinate
                                   #transformation into image coordinates
 
    # reading freeboard data and computing geographic into polarstereographic coordinates
    ICESAT_p,fbh=read_icesat(filename2,sgn) #fbh are measured freeboard heights in cm

    # calculating new coordinates for freeboard data
    x_neu=[]
    y_neu=[]
    for x,y in zip(ICESAT_p[0],ICESAT_p[1]):
        x_neu.append(dot(array([A[0,0],A[0,1]]),array([x,y]))+A[0,2])
        y_neu.append(dot(array([A[1,0],A[1,1]]),array([x,y]))+A[1,2])
    x_n=array(x_neu)
    y_n=array(y_neu)
    fbh_n=array(fbh)

    x_n_limited=clip(x_n,0.,1.)
    x_indices=nonzero(x_n==x_n_limited)
    x_xind=x_n[x_indices]
    y_xind=y_n[x_indices]
    fbh_xind=fbh_n[x_indices]
Line 22: Line 96:
    ASAR_1=[lat1,lon1]
    ASAR_2=[lat2,lon2]
    ASAR_3=[lat3,lon3]
    ASAR_4=[lat4,lon4]
    y_n_limited=clip(y_xind,0.,1.)
    y_indices=nonzero(y_xind==y_n_limited)
    x_bild=x_xind[y_indices]
    y_bild=y_xind[y_indices]
    fbh_bild=fbh_xind[y_indices]
    
Line 27: Line 103:
    ASAR_1p=mapll(ASAR_1[0],ASAR_1[1],sgn) #computing polarstereographic coordinates
    ASAR_2p=mapll(ASAR_2[0],ASAR_2[1],sgn)
    ASAR_3p=mapll(ASAR_3[0],ASAR_3[1],sgn)
    ASAR_4p=mapll(ASAR_4[0],ASAR_4[1],sgn)
---- /!\ '''Edit conflict - other version:''' ----
Line 32: Line 105:
    X=int(abs(ASAR_2p[0]-ASAR_1p[0])/resolution) #image size in pixel
    Y=int(abs(ASAR_4p[1]-ASAR_1p[1])/resolution)
---- /!\ '''Edit conflict - your version:''' ----
Line 35: Line 107:

---- /!\ '''End of edit conflict''' ----
    x_y_fbh=array([x_bild,y_bild,fbh_bild])

    return x_y_fbh
}}}

'''coord_transform.py'''
{{{#!python
from scipy import linalg as la

def coord_transformation(ASAR_p):
Line 36: Line 120:
    y00,x00,y01,x01,y02,x02,y03,x03=int(ASAR_1p[1]),int(ASAR_1p[0]),int(ASAR_4p[1]),int(ASAR_4p[0]),int(ASAR_3p[1]),int(ASAR_3p[0]),int(ASAR_2p[1]),int(ASAR_2p[0])     y00,x00,y01,x01,y02,x02,y03,x03=int(ASAR_p[1]),int(ASAR_p[0]),int(ASAR_p[7]),int(ASAR_p[6]),int(ASAR_p[5]),int(ASAR_p[4]),int(ASAR_p[3]),int(ASAR_p[2])
Line 44: Line 128:
    Faktor1=dot(P1,transpose(P0))
    Faktor2=inverse(dot(P0,transpose(P0)))
    A=dot(Faktor1,Faktor2) # Transformation matrix
    Faktor1=dot(P1,la.transpose(P0))
    Faktor2=la.inverse(dot(P0,la.transpose(P0)))
    A=dot(Faktor1,Faktor2) # Transformation matrix
   return A
  }}}
Line 48: Line 134:
    # reading freeboard data
    lon=[]
    lat=[]
    fbh=[]
    datei = open (filename2, 'r')
    line=datei.readline()
    k=-1
    while line!="":
        k=k+1
        data=string.split(line)
        lon.append(float(data[0]))
        lat.append(abs(float(data[1])))
        fbh.append(float(data[2]))
        line=datei.readline()
'''read_icesat.py'''
Line 63: Line 136:
    polar=mapll(array(lat),array(lon),sgn) {{{#!python
# reading freeboard data
Line 65: Line 139:
    # calculating new coordinates for freeboard data
    x_neu=[]
    y_neu=[]
    for x,y in zip(polar[0],polar[1]):
        x_neu.append(dot(array([A[0,0],A[0,1]]),array([x,y]))+A[0,2])
        y_neu.append(dot(array([A[1,0],A[1,1]]),array([x,y]))+A[1,2])
import string
from geo_polar import *
from scipy import io
Line 72: Line 143:
    # cutting off non-corresponding data values
    m=-1
    index_vec=[]
    for xn,yn in zip(x_neu,y_neu):
        m=m+1
        if xn<=1. and xn >=0. and yn<=1. and yn >=0.:
            index_vec.append(m)
def read_icesat(filename,sgn):
    data=io.read_array(filename)
    polar=mapll(data[:,1],data[:,0],sgn)
    fbh=data[:,2]
    return polar,fbh
}}}
Line 80: Line 150:
    x_bild=[]
    y_bild=[]
    fbh_bild=[]
    for i in index_vec:
        x_bild.append(x_neu[i])
        y_bild.append(y_neu[i])
        fbh_bild.append(fbh[i])
---- /!\ '''Edit conflict - other version:''' ----
}}}
Line 88: Line 153:
    x_y_fbh=array([x_bild,y_bild,fbh_bild]) ---- /!\ '''Edit conflict - your version:''' ----
Line 90: Line 155:
    return x_y_fbh ---- /!\ '''End of edit conflict''' ----
Line 92: Line 157:

Die benötigten Module polar_projection.py und read_asar.py sind auf der Seite der Arbeitsgruppe 0 [[AG0_ASAR_Einlesen]] zu finden.

'''fbh_bildkoordinaten_test.py'''

Zum Testen hängt man an das obige Programm folgende Zeilen an:
{{{#!python
filename1='ASA_IMP_1PNDPA20060617_043346_000000162048_00362_22460_2136.N1'
filename2='LonLatFre_1706_6.xyz'
ergebnis=fit_freeboard_ASAR(filename1,filename2)
Line 93: Line 168:



{{attachment.schemabild2.jpg}}

Arbeitsgruppe 1: Freibord

Die Aufgabe der Arbeitsgruppe bestand darin, die I

Daten

Der Gruppe stand ein ASAR-Satellitenbild zur Verfügung, das ein Auschnitt des Weddellmeeres zeigt und ein ICESat-Datensatz, der die geographischen Positionen (lon, lat) und die an diesen Punkten gemessene Freibordhoehe (cm) für einen Ueberflug quer durch den ASAR-Ausschnitt beinhaltet.

Methodik

Theorie zur Koordinatentransformation:

Eine affine Abbildung ist eine lineare Koordinatentransformation, die die elementaren Transformationen Translation, Rotation, Dilatation, Stauchung und Scherung umfasst. Sie kann durch Vektoraddition und Matrixmultiplikation ausgedrueckt werden:

latex error! exitcode was 2 (signal 0), transscript follows:

Homogene Koordinaten:

latex error! exitcode was 2 (signal 0), transscript follows:

Für drei nichtkollineare Punkte ergibt sich damit folgendes Gleichungssystem:

Bestimmung der Transformationskoeffizienten für drei nichtkollineare Punkte: Bestimmung der Transformationskoeffizienten für mehr als drei nichtkollineare Punkte (Methode der kleinsten Quadrate):

(für mehr Informationen siehe B. Jähne, Digitale Bildverarbeitung, Kapitel 10.4)

Arbeitsschritte:

Die Gruppe hat Programme bzw. Funktionen erarbeitet, die folgendes tun:

  • Einlesen der ICESat-Datei und umrechnen der geographischen Koordinaten des Ueberfluges in polarstereographische Koordinaten.
  • Die Eckpunkte des ASAR-Bildes, die von der Arbeitsgruppe 0 in geographischen Koordinaten übergeben wurden, werden ebenfalls in polarstereographische Koordinaten umgerechnet
  • Die Koordinatentransformation wird so durchgeführt, dass man als Ergebnis den ICESat-Datensatz als normierte Bildkoordinaten erhaelt. Dazu werden zunaechst die vier ASAR-Eckpunkte in normierte Bildkoordinaten gebracht und anschließend die ICESat-Daten auf dasselbe Koordiantensystem transformiert.
  • Als Endergebnis wird eine Matrix erzeugt, die die Messpositionen des ICESat-Ueberfluges im ASAR-Auschnitt in Bildkoordinaten und die zugehörigen Freibordhöhen enthält.

Ergebnisse

(Output, Statistik)

Diskussion

fbh_bildkoordinaten.py

   1 from polar_projection import *
   2 from read_asar import *
   3 from read_icesat import *
   4 from coord_transform import *
   5 from scipy import *
   6 
   7 def fit_freeboard_ASAR(filename1,filename2):
   8     """filename1: ASAR data file, filename2: freeboard data file
   9        creates new coordinate system defined by corners of ASAR image and selects freeboard values within ASAR image box
  10        returns an array containing normalized image coordinates and corresponding freeboard values:
  11        [x_coordinate, y_coordinate, freeboardheight(cm)]"""
  12     
  13     sgn=-1  #Antarctica
  14     ASAR=array(read_asar_corners(filename1))
  15     ASAR_p=zeros(8)
  16     for k in arange(0,7,2):       #computing polarstereographic coordinates
  17         ASAR_p[k:k+2]=mapll(ASAR[k],ASAR[k+1],sgn)
  18 
  19     A=coord_transformation(ASAR_p) #computing transformation matrix A for coordinate
  20                                    #transformation into image coordinates
  21  
  22     # reading freeboard data and computing geographic into polarstereographic coordinates
  23     ICESAT_p,fbh=read_icesat(filename2,sgn)    #fbh are measured freeboard heights in cm
  24 
  25     # calculating new coordinates for freeboard data
  26     x_neu=[]
  27     y_neu=[]
  28     for x,y in zip(ICESAT_p[0],ICESAT_p[1]):
  29         x_neu.append(dot(array([A[0,0],A[0,1]]),array([x,y]))+A[0,2])
  30         y_neu.append(dot(array([A[1,0],A[1,1]]),array([x,y]))+A[1,2])
  31     x_n=array(x_neu)
  32     y_n=array(y_neu)
  33     fbh_n=array(fbh)
  34 
  35     x_n_limited=clip(x_n,0.,1.)
  36     x_indices=nonzero(x_n==x_n_limited)
  37     x_xind=x_n[x_indices]
  38     y_xind=y_n[x_indices]
  39     fbh_xind=fbh_n[x_indices]
  40     
  41     y_n_limited=clip(y_xind,0.,1.)
  42     y_indices=nonzero(y_xind==y_n_limited)
  43     x_bild=x_xind[y_indices]
  44     y_bild=y_xind[y_indices]
  45     fbh_bild=fbh_xind[y_indices]
  46     
  47 
  48 ---- /!\ '''Edit conflict - other version:''' ----
  49 
  50 ---- /!\ '''Edit conflict - your version:''' ----
  51 
  52 
  53 ---- /!\ '''End of edit conflict''' ----
  54     x_y_fbh=array([x_bild,y_bild,fbh_bild])
  55 
  56     return x_y_fbh

coord_transform.py

   1 from scipy import linalg as la
   2 
   3 def coord_transformation(ASAR_p):
   4     # polarstereographic coordinate system
   5     y00,x00,y01,x01,y02,x02,y03,x03=int(ASAR_p[1]),int(ASAR_p[0]),int(ASAR_p[7]),int(ASAR_p[6]),int(ASAR_p[5]),int(ASAR_p[4]),int(ASAR_p[3]),int(ASAR_p[2])
   6     # new coordinate system with normalized coordinates  
   7     y10,x10,y11,x11,y12,x12,y13,x13=0,0,1,0,1,1,0,1
   8 
   9     # calculating transformation matrix:
  10     P0=array([[x00, x01, x02, x03],[y00,y01,y02,y03],[1.0,1.0,1.0,1.0]])
  11     P1=array([[x10, x11, x12, x13],[y10,y11,y12,y13],[1.0,1.0,1.0,1.0]])
  12 
  13     Faktor1=dot(P1,la.transpose(P0))
  14     Faktor2=la.inverse(dot(P0,la.transpose(P0)))
  15     A=dot(Faktor1,Faktor2)  # Transformation matrix
  16     return A

read_icesat.py

   1 # reading freeboard data
   2 
   3 import string
   4 from geo_polar import *
   5 from scipy import io
   6 
   7 def read_icesat(filename,sgn):
   8     data=io.read_array(filename)
   9     polar=mapll(data[:,1],data[:,0],sgn)
  10     fbh=data[:,2]
  11     return polar,fbh


/!\ Edit conflict - other version:


}}}


/!\ Edit conflict - your version:



/!\ End of edit conflict


Die benötigten Module polar_projection.py und read_asar.py sind auf der Seite der Arbeitsgruppe 0 AG0_ASAR_Einlesen zu finden.

fbh_bildkoordinaten_test.py

Zum Testen hängt man an das obige Programm folgende Zeilen an:

   1 filename1='ASA_IMP_1PNDPA20060617_043346_000000162048_00362_22460_2136.N1'
   2 filename2='LonLatFre_1706_6.xyz'
   3 ergebnis=fit_freeboard_ASAR(filename1,filename2)

attachment.schemabild2.jpg

LehreWiki: \AG1_Freibord (last edited 2008-07-11 11:19:34 by NinaMaass)