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1 Summary

pyOM2.3 (Python Ocean Model) is a numerical circulation ocean model which was writ-
ten for educational purpose. It is meant to be a simple and easy to use numerical tool
to configure and to integrate idealized and realistic numerical simulations of the ocean in
Boussinesq approximation. Non-hydrostatic situations as well as large-scale oceanic flows
can be considered, Cartesian or pseudo-spherical coordinate systems can be used. Sev-
eral idealized experiments and examples are preconfigured and can be easily chosen and
modified using two alternative configuration methods based on Fortran90 or Python. Pre-
requisites for the installation is a Fortran 90 compiler and the Lapack library, and for the
Fortran front the NetCDF-library (since IO is realized mainly using the NetCDF format).
For the Python front end, the numerical module numpy is required and several other mod-
ules can be used in addition, e.g. to provide a graphical user interface. Both version are
based on identical Fortran90 code which is fully parallelized based on the MPI-library to
enhance performance. The code can be freely downloaded1 but there is usually no support
provided.

2 Installation

The following installation procedure to compile pyOM2.3 on your system assumes a Unix
system and that all libraries and compilers are available. For both the Fortran and Python
front ends of pyOM2.3 you can obtain the source code from https://github.com/ceden/pyOM2

using e.g. the command git clone https://github.com/ceden/pyOM2. The directory
where you put the model called will be called dir hereafter.

2.1 Fortran front end

The following steps are needed to use the Fortran front end of pyOM2.3

• Determine which site-specific Makefile options will be read by the compiler. Type

1

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the ”Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

This permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
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echo site_specific.mk_${HOSTTYPE}

to see the file name that will be read and which needs to be provided. The shell
variable HOSTTYPE is used to determine the specific system and is usually set to the
name of the system you are logged on. Note that names might differ using different
shells. Examples for supported systems are provided in dir and one of them should be
copied to the file dir/site_specific.mk_${HOSTTYPE}. If necessarry edit the global
variables in the file dir/site_specific.mk_${HOSTTYPE} to set compiler names and
options and to set directories of libraries. See also comments further below.

• Change directory to dir/for_config and type make <model>, where <model> is set
to one of the example Fortran files in dir/for_src (excluding the suffix .f90).

• Run the executable <model>.x in dir/bin, investigate the output and modify the
model setup.

The platform dependent options in the file dir/site_specific.mk_${HOSTTYPE} con-
tain information about the path to netcdf library and header files in the variable CDFFLAGS

and information for the path to MPI library and header in MPIFLAGS. The name of the
Fortran 90 compiler (usually gfortran or ifort) should be given by the variable F90. Com-
piler flags and further libraries such as Lapack are contained in the variables F90FLAGS.
When the MPI library is not available, a non-parallel version of the Fortran front end
of pyOM2.3 can be build by make target=without_mpi <model>. The netcdf library is,
however, mandatory at the moment. Currently, the following files for the corresponding
systems are provided:

file name HOSTTYPE system
site_specific.mk_i686-linux i686-linux generic 32 bit Linux (Ubuntu, etc)
site_specific.mk_x86_64-linux x86_64-linux generic 64 bit Linux
site_specific.mk_intel-mac intel_mac Mac OSX
site_specific.mk_thunder x86_64-linux a specific 64 bit Linux server
site_specific.mk_mistral x86_64-linux another specific platform

2.2 Python front end

The following steps are needed to use the Python front end of pyOM2.3

• Determine which site-specific Makefile options will be read by the compiler. Type

echo site_specific.mk_${HOSTTYPE}

to see the file name that will be read and which needs to be provided. For details
see description of Fortran front end installation.

• Change directory to dir/py_src and type make.

• Run one of the example Python scripts in dir/py_config.
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To compile the extension module for Python from the Fortran subroutines and modules a
number of Python modules are needed. The numerical module numpy is mandatory, the
modules mpi4py, scipy, Tkinter, matplotlib and netcdf4 or Scientific.IO.netcdf

are optional. Two extension modules will be build automatically, one with and one
without MPI support, named dir/pyOM_code_MPI.so and/or dir/pyOM_code.so, respec-
tively. For the former, it is necessary to provide the path to the MPI library and include
header files in the configuration file dir/site_specific.mk_${HOSTTYPE} in the vari-
ables F2PY_MPIFLAGS. Further compiler flags and libraries that are needed are specified in
F2PY_FLAGS. The other variables in dir/site_specific.mk_${HOSTTYPE} are not used.

When the extension modules dir/pyOM_code.so and/or dir/pyOM_code_MPI.so are
build, the Python front end can be used by executing python <model>.py in the directory
dir/py_config, where <model> denotes one of the example configurations in the directory
dir/py_config. The extension module dir/pyOM_code_MPI.so contains MPI support
and is loaded automatically when available, otherwise dir/pyOM_code.so is loaded. The
examples in dir/py_config are based on different classes, which differ by using additional
Python modules. The basic class is contained in the Python module pyOM.py and should
work as long as one of the extension modules have been built. Extensions of this basic
class are given by

• pyOM_cdf.py which adds basic netcdf-based IO to pyOM.py using the Python modules
netcdf4 or Scientific.IO.netcdf.

• pyOM_ave.py which adds time averages to pyOM_cdf.py

• pyOM_gui.py which adds a graphical user interface to pyOM_ave.py using Tkinter.py
and plotting during model execution using matplotlib.

The classes are imported by each of the examples in dir/py_config.

3 Directory structure and model configuration

3.1 Directory structure

The numerical code is distributed over several directories. Here is a list of these directories
and a short characterisation of its content. All references to files or directories are relative
to the directory in which pyOM2.3 is located.

• ./for_src: Fortran subroutines used by both Fortran and Python front end

– ./for_src/main: Main module and subroutines

– ./for_src/external: Solver for surface pressure or streamfunction

– ./for_src/non_hydrostatic: Routines for non-hydrostatic terms

– ./for_src/parallel: Routines for communication between processors
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– ./for_src/density: Routines for equation of state of sea water

– ./for_src/isoneutral: Routines for mixing along neutral surfaces

– ./for_src/tke: Small-scale mixing closure by Gaspar et al. (1990)

– ./for_src/eke: Meso-scale eddy mixing closure by Eden and Greatbatch (2008)

– ./for_src/idemix: Internal wave mixing closure by Olbers and Eden (2013)

– ./for_src/obc: Open boundary formulation

– ./for_src/advection: Routines for passive and active tracer advection

– ./for_src/tracer: Routines for optional passive tracer

– ./for_src/diagnostics: Routines for diagnostics (used by Fortran only)

– ./for_src/etc: Miscellaneous routines

• ./py_src: Python modules and extension modules

• ./py_config: configuration examples of Python front end

• ./for_config: configuration examples for Fortran front end

• ./doc: contains this documentation

• ./bin: contains executable of Fortran front end after successful compilation

• ./setups: contains a few specific realistic setups in subdirectories

The directory ./for_src is again subdivided into several subdirectories containing certain
aspects of the code. The main code is located in ./for_src/main. The top-level program
of the Fortran front end is ./for_src/main/main.f90. Here, the work flow of the main
routines can be seen. The basic class for the Python front end is in ./py_src/pyOM.py,
which does essentially the same as ./for_src/main/main.f90. The main module is lo-
cated in ./for_src/main/main_module.f90, is available to both front ends and contains
all important parameters and model variables. A short description of the most important
model variables can be found in main_module.f90. Other modules containing documen-
tation are ./for_src/tke/tke_module containing everything concerning the small-scale
mixing closure, ./for_src/tke/eke_module, containing prognostic meso-scale mixing clo-
sures, ./for_src/tke/idemix_module, containing the IDEMIX closure for internal gravity
waves, ./for_src/tke/isoneutral_module, containing the along-isopycnal mixing pack-
age, ./for_src/tke/diagnostic_module, containing everything related to diagnostics.
Several other modules will also be build.
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3.2 Model configuration

The model configuration is realized by template subroutines (Fortran front end) or tem-
plate methods (Python front end) for which specific realizations are supplied for each
specific experiment. The idea is to keep the whole model configuration in a single source
code file containing all relevant routines. Specific examples can be found in the directory
./py_config and ./for_config. Template Fortran routines and Python methods are
named identical. A complete list of them is given here.

• set_parameter:

sets all important fixed model parameters, like domain size, etc. The configuration is
specified mainly by logical switches, implementing mixing parameterizations, hydro-
static approximation, etc. which is explained in detail below. This routine/method
is called only once before allocating the model variables.

• set_grid:

sets the (vertical and horizontal) resolution by specifying the variables dxt, dyt, and
dzt. Units are m for the latter and either also m or degree longitude or latitude for
dxt, dyt, respectively, if the logical switch coord_degree is true. The origin of the
grid in x and y can be set by x_origin and y_origin with corresponding units. Based
in this input, the u-centered grid as detailed below is set up. This routine/method
is only called once during the model setup after allocating the model variables.

• set_coriolis:

sets the Coriolis parameter in the double precision fields coriolis_t and coriolis_h.
Both are two-dimensional (physical dimensions x and y) to allow for rotated grids.
This routine/method is only called once during the model setup after set_grid.

• set_topography

sets the topography which is given by the two-dimensional (physical dimensions x
and y) integer field kbot. A value of zero denotes land, 1 ≤ kbot ≤ nz denotes the
vertical index of the deepest wet grid point. This routine/method is only called once
during the model setup after set_coriolis.

• set_initial_conditions

sets the initial conditions for all model variables. This routine/method is only called
once during the model setup after set_topography.

• set_forcing

can be used to set time dependent surface boundary conditions or restoring zones.
This routine/method is called at the beginning of each time step.
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• set_diagnostics

can be used to register variables to be averaged. In Python front-end only available
in class pyOM_ave. This routine/method is only called once during the model setup
after all configuration is done.

• set_particles

can be used to initialize the position of particles integrated simultaneously. This
routine/method is only called once during the model setup after all configuration is
done.

The Fortran template routines have to be present in any case, even when they are empty.
For the Python front end, only the methods which are actually changed are necessary. The
following methods are available for the Python front end only

• user_defined_signal

is a method which is called by all processors when the leading processor has signaled
so. Can be used to exchange data for plotting with the GUI versions in parallel
execution.

• make_plot

makes a plot for the GUI version.

3.3 Running and restarting the model

After successful compilation of the Fortran front end, the executable can be found in the
directory ./bin. The executable can be run directly in ./bin or in any other directory.
No further files are needed for a model integration, except for configurations which read
data from specific (binary or netcdf) forcing files. For the Python front end, the location
of the module files have to be specified. This is done in the first line of each example in
./py_config.

3.3.1 Running and restarting the Fortran front end

The model integration will start from the initial conditions as specified in the configuration
templates (if no restart files are present, see below) and will integrate over a time period
specified by the variable runlen which can be found in main_module. After that period
the integration stops and a (or several) restart file(s) will automatically be written by the
Fortran front end, containing the last two time steps of each model variable. The files
are named restart_PE_’my_pe’.dta where the variable my_pe is identical to the one in
main_modules and denotes the ordinal number of the respective processor.

The restart files will be read automatically when the model is restarted. Note that
the Fortran front end will always try to read a restart file, which then overides the initial
conditions specified in the template configuration routines. If there is no restart file present,
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the Fortran front end will use the initial conditions. Note also that at the end of each
integration, any existing restart file will be overwritten.

3.3.2 Running and restarting the Python front end

After initializing the instance of the class pyOM (or derivatives of it) the model is started
by the method run. The length of the run is specified by the parameter runlen for the
method run, the snapshot intervall by the parameter snapint, both in seconds. The
methods read_restart and write_restart are implemented for the Python front end
for reading and writing the restarts in the same format as the Fortran front end. In the
GUI-version pyOM_gui.py, the snapshots and restarts can be written at any time using
the corresponding buttons.

3.4 Sample configurations

This is an incomplete list of sample configurations which can be found either in the directory
./for_config or in ./py_config, or in both.

• kelv_helm1.py/f90

A nonhydrostatic configuration of a two-layer system with a large shear between the
layers to demonstrate Kelvin-Helmholtz instabilities. The domain is two-dimensional,
i.e. in the x-z plane, periodic in x and y, and there are no surface fluxes at the top
or bottom, but a zone in the westernmost part of the domain, where temperature
and velocity are relaxed towards the initial conditions. The initial conditions are two
layers of equal thickness but different buoyancy moving to the east and relative to
each other. At the layer interface a small disturbance is introduced such that in the
simulation Kelvin-Helmholtz instability will show up.

• holmboe1.py/f90

Similar to kelv_helm1.py/f90 but without relaxation zone and different initial con-
dition corresponding to an Holmboe instability. The initial small disturbance is taken
as the fastest growing mode of a linear stability analysis of the initial conditions.

• internal_wave1.py/f90

A nonhydrostatic configuration to demonstrate internal wave beams. The domain
is two-dimensional, i.e. in the x-z plane and in the center a wave maker is placed.
The variable fac can be increased in order to increase the spatial (and temporal)
resolution. The temperature variable of the model is in this case a temperature per-
turbation, the effect of the background stratification on the perturbation temperature
is implemented in the configuration routine set_forcing.

• rayleigh1.py/f90
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A nonhydrostatic configuration to demonstrate Rayleigh-Bernard convection. The
domain is two-dimensional, i.e. in the x-z plane, and the are top and bottom heat
fluxes. The variable fac can be increased in order to increase the spatial (and tem-
poral) resolution.

• jets1.py/f90

A hydrostatic configuration to demonstrate eddy-driven zonal jets. A wide channel
model with relaxation at the side walls and interior damping as in Eden (2010),
simulating strong eddy-driven zonal jets.

• eady1.py/f90

A hydrostatic configuration to demonstrate the classical Eady problem (Eady, 1949).
A narrow channel on an f -plane with prescribed stratification and vertically sheared
background zonal flow. The temperature variable of the model is in this case a tem-
perature perturbation, the effect of the background stratification on the perturbation
temperature is implemented in the configuration routine set_forcing.

• eady2.py/f90

Similar to eady1.py/f90, but the small initial perturbation is calculated from the
fastest growing mode of a linear stability analysis of the initial condition.

• acc1.py/f90

A hydrostatic model with a channel attached to a closed basin, similar to the Southern
and Atlantic Ocean as in Viebahn and Eden (2010). There is wind forcing over the
channel part and temperature relaxation driving a large-scale meridional overturning
circulation.

• acc2.py/f90

A hydrostatic model using spherical coordinates with a partially closed domain.
There is wind forcing over the channel part and buoyancy relaxation driving a large-
scale meridional overturning circulation.

3.5 Realistic configurations

Several realistic model configurations can be found in ./setups. Forcing files are provided
at https://wiki.cen.uni-hamburg.de/ifm/TO/pyOM2.

• flame_low/setup1.py/f90

North Atlantic configuration with horizontal resolution of 4/3o × 4/3o and 45 levels.
Based on the FLAME model configuration used in e.g. Eden and Willebrand (2001).

• global_4deg_45level/setup1.py/f90

Quasi-global configuration with 4o × 4o and 45 levels.
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• global_1deg/setup1.py/f90

Quasi-global configuration with 1o × 1o and 100 levels.

4 Parameterisations and boundary conditions

In this section, the most important sub-grid-scale parameterizations and boundary con-
ditions which are used in the model and also other important aspect of the numerical
implementation are listed and briefly discussed. All references to files containing code are
relative to the directory in which pyOM2.3 is located. All parameters need to be given in
SI units.

Parameterizations or boundary conditions are specified by logical variables which are
either contained in the main module ./for_src/main/main_module.f90 or in the modules
of the respective parameterization. These logical variables are set to a false value by default,
except for some which are noted below.

4.1 Streamfunction or surface pressure

To obtain the pressure in the Boussinesq system of equations it is necessary to solve a
diagnostic relation for the pressure. In case of the hydrostatic assumption with a rigid
lid i.e. w = 0 at z = 0, this relation simplified to one of the surface pressure only.
An alternative formulation involved a streamfunction for the depth-averaged flow as de-
tailed below. Setting the logical switch enable_streamfunction to a true value enables
a streamfunction formalism, otherwise the surface pressure itself is found. The former
algorithm is more stable, but involved a special treatment of island integrals as detailed
below. In both cases an iterative conjugate gradient method to solve diagnostic relations
is used controlled by the stop criterion congr_epsilon and the maximal allowed iterations
by congr_max_iterations.

It is also possible to relax the rigid-lid assumption and to use a linearized free surface
formulation by the switch enable_free_surface, but then energy conservation is not
given anymore.

4.2 Lateral and surface boundary conditions

Lateral boundary conditions are no-flux boundary condition for tracers and free-slip for
momentum or periodic boundary conditions (or open boundary conditions as detailed
below). Zonal periodic boundary conditions can be chosen by setting the logical switch
enable_cyclic_x to a true value in the configuration subroutine/method set_parameter

to apply periodic boundary conditions for all variables in zonal direction. The logical
switch enable_cyclic_y applies periodic boundary conditions in meridional direction.
Surface and eventually bottom fluxes of buoyancy and momentum can be specified in the
configuration subroutine/method set_initial_conditions and set_forcing.

13



Open boundary conditions using a radiation condition at the northern, southern, east-
ern or western wall of the model domain can be set in the module dir/for_src/obc/obc_module.f90.
Additional damping zones can be implemented there as well.

4.3 Conservation of energy

Energy is exchanged consistently between the different reservoirs setting the logical vari-
ables enable_conserve_energy to a true value, which is also the default setting. For en-
ergy conservation, the dissipation rates by all frictional and mixing effects need to be calcu-
lated which considerably increases computing time, such that it might become necessary to
disable energy conservation for specific configurations. This should be done in the template
configuration subroutine/method set_parameter by setting enable_conserve_energy to
a false value.

There are some choices to be made for energy consistency. Setting the logical switch
enable_store_cabbeling_heat to a true value, the nonlinear heating rates due to vertical,
lateral and isopycnal mixing in the presence of the the non-linear equation of state are trans-
fered to heat (where it can be neglected), otherwise it is transferred to the respective sug-
grid reservoir (TKE or EKE). Numercal advection of temperature and salinity also needs
energy, even using the 2.nd order advection scheme. This energy is taken either from the
heat reservoir or from TKE by setting enable_take_P_diss_adv_from_tke to a true value.
Before taking this energy from TKE, the global mean energy need is calculated and sub-
tracted locally to guarantee positive TKE values. Setting enable_store_bottom_friction_tke
to a true value, energy release by bottom friction is transferred to TKE instead of internal
wave energy.

4.4 Hydrostatic approximation and convective adjustment

The hydrostatic approximation is enabled by the logical variable enable_hydrostatic. It
is true by default, for a non-hydrostatic configuration it needs to be set to a false value in the
configuration subroutine/method set_parameter. Note that when using the hydrostatic
approximation the three-dimensional Poisson equation for the full pressure does not have
to be solved, such that the model integration can be much faster.

Using the hydrostatic approximation, static instabilities are removed by setting the
vertical diffusivity to a large value. This procedure is sometimes called convective adjust-
ment. Using the TKE parameterization by Gaspar et al. (1990) (see below), convective
adjustment is done automatically.

4.5 Spherical coordinates

For realistic configurations, the model can use pseudo-spherical coordinates as specified
below in Section 6. These coordinates are enabled with the logical variable coord_degree,
which is set to a false value be default. For a false value of coord_degree all metric terms
in the momentum equation are set to zero, and the factor cosφ or 1/ cosφ showing up in
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the differential operators is set to one, otherwise the full equations as specified below in
Section 6 are used.

4.6 Advection schemes

Although the choice of the advection scheme is not a sub-grid-scale parameterisation, it
strongly affects the dissipation in the model and is therefore discussed here as well. It is pos-
sible to choose between the classical second-order central differences scheme as the default,
and a second order scheme with superbee flux limiter. The latter is implemented by set-
ting the logical variable enable_superbee_advection to a true value in the configuration
subroutine/method set_parameter. Note that this choice refers to the advection scheme
of the tracers but not to the advection of momentum, which is always the classical second-
order central differences scheme. Note also that the positive definite superbee scheme
introduces a certain amount of numerical diffusion, such that sometimes no additional
diffusion is needed in the model simulation. There also also enable_dst3_advection,
enable_upwind3_advection which enable 3.rd order direct space time and 3.rd order up-
wind schemes for tracer advection, respectively.

Setting the switch enable_AB_time_stepping to a true value enables Adam-Bashforth
time stepping for the chosen advection scheme (default), otherwise forward time stepping
will be used.

4.7 Constant lateral and vertical friction and mixing

Lateral harmonic friction acting on the horizontal velocity (u, v) can be enable by set-
ting enable_hor_friction to a true value and is controlled by the horizontal viscos-
ity a_h. Lateral harmonic mixing acting on the salinity and temperature is enabled by
enable_hor_diffusion and controlled by the horizontal diffusivity k_h.

Vertical harmonic friction and mixing is always present any by default treated by an
fully implicit formulation to allow for large mixing parameter. An explicit formulation for
friction can be enabled by setting enable_explicit_vert_friction to a true value. The
vertical viscosity is set by kappam_0, and the vertical diffusivity by kappah_0. Default
values for all mixing parameters are zero. Note that all viscosities and diffusivities should
be specified in the template configuration subroutine/method set_parameter.

4.8 Bottom and interior friction

Linear bottom friction is enabled by setting the logical variable enable_bottom_friction

to a true value in the configuration subroutine/method set_parameter. The inverse time
scale for bottom friction is given by r_bot. Default value is zero. Quadratic bottom friction
is enabled by enable_quadratic_bottom_friction with parameter r_quad_bot. Adding
interior Rayleigh damping is implemented by the switch enable_ray_friction and the
parameter r_ray.
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4.9 Small-scale turbulent mixing closure

A prognostic TKE model for vertical mixing first introduced by Gaspar et al. (1990)
is enabled with the logical variable enable_tke in the configuration subroutine/method
set_parameter, which then calculates the vertical diffusivities and viscosities. The con-
stant variables kappam_0 and kappah_0 are not used in this case. Several parameter and
additional options can be set, which are documented in ./for_src/tke/tke_module.f90.

4.10 Internal wave breaking closure

The internal wave mixing closure IDEMIX (Olbers and Eden, 2013) is enabled by the switch
enable_idemix in the configuration subroutine/method set_parameter. Surface and bot-
tom forcing has to be supplied by the fields forc_iw_surface and forc_iw_bottom, re-
spectively, which may be set in the template subroutine set_initial_conditions. See
also the example config files. Several additional options can be set, which are documented
in ./for_src/idemix/idemix_module.f90. The gravity wave drag formulation is con-
tained in the file idemix3.f90.

4.11 Meso-scale eddy closure

Meso-scale eddy mixing is implemented by along-isopycnal mixing and an additional eddy-
driven advection velocity for tracer, which is usually called the parameterization by Gent
et al. (1995). The corresponding diffusivities are either prescribed as constant values of
calculated using the prognostic EKE closure by Eden and Greatbatch (2008).

4.11.1 Isoneutral mixing

Lateral mixing of tracers along neutral surfaces following the formulation by Griffies (1998)
is enabled by setting the logical variable enable_neutral_diffusion to a true value in
the configuration subroutine/method set_parameter. The isoneutral diffusivity which is
used is either given by the constant variable K_iso_0 or by the diffusivity calculated by
the prognostic EKE closure by Eden and Greatbatch (2008) (see below) if it is enabled.

In case of too steep slopes s of the neutral surfaces, the mixing scheme by Griffies
(1998) becomes unstable. Therefore the isoneutral diffusivity is multiplied by the factor
dtaper given by

dtaper =
1

2
(1 + tanh ((sc − |s|)/sd))

where the parameter sc and sd are set by the variables iso_slopec and iso_dslope,
respectively. In regions with too steep slopes, the isoneutral mixing is replaced by lateral
mixing using the diffusivity given by K_iso_steep, multiplied with a factor 1− dtaper.
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4.11.2 Eddy-driven advection velocity

The additional eddy-driven advection velocity is either explicitly calculated in form of
an anti-symmetric (skew) component of the isoneutral mixing operator following Griffies
(1998), which is the default, or by the Temporal Residual Mean (TRM) form where the
velocities from the momentum equations already contain the eddy-driven components.
The former version is enabled by the logical enable_skew_diffusion in the configuration
subroutine/method set_parameter. This logical is set to false by default, i.e. the TRM
form is the default. For the TRM form, an additional vertical friction term is applied in the
momentum equation with viscosity Kgmf

2/N2, where N is the local stability frequency, f
the Coriolis parameter. To limit this viscosity in case of vanishing stratification, a fixed
maximal threshold of 0.01 is applied to the factor f 2/N2.

Kgm denotes the skew diffusivity, either used for the antisymmetric components of the
isoneutral mixing operator or for the TRM form, and is given either by the constant variable
K_gm_0 or by the prognostically diffusivity of the EKE closure by Eden and Greatbatch
(2008) (see below) if it is enabled.

4.11.3 Prognostic EKE closure

The eddy mixing closure by Eden and Greatbatch (2008) is enabled by setting the switch
enable_eke to a true value in the configuration subroutine/method set_parameter. Sev-
eral parameter for this closure and additional options can be set, which are documented in
./for_src/eke/eke_module.f90.

5 Diagnostic output

Simple text based output is written to standard output (i.e on the screen). More complex
diagnostic output is written by the Fortran front end in NetCDF format following usual
conventions. The output can be easily visualised by e.g. the free software ferret available
at http://ferret.wrc.noaa.gov/Ferret. For the python frontend, graphical output
during the model integration is possible.

5.1 Time step monitor and snapshots of model variables

5.1.1 Fortran frontend

If the logical variable enable_diag_ts_monitor is set to a true value, the model time and
the number of iterations of the two- and three-dimensional Poisson solver is written to
standard output. Also the maximum horizontal and vertical CFL numbers are diagnosed.
The interval of the output is controlled by the variable ts_monint in seconds.

If the logical variable enable_diag_snapshots is set to a true value, snapshots of
the model variables are written by the Fortran front end subsequently to a NetCDF file
pyOM.cdf. Any existing file of this name will be overwritten during model start. The
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frequency of the output is controlled by the variable snapint. The value of snapint gives
the number of seconds between subsequent snapshots written to pyOM.cdf.

All diagnostics are inactive by default and need to be enabled by logical variables
in the configuration subroutine set_parameter. The logical variables can be found in
./for_src/diagnostics/diagnostics_module.f90.

5.1.2 Python frontend

Model time and the number of iterations of the two- and three-dimensional Poisson solver is
written by the method diagnose to standard output in intervals specified by the parameter
snapint given to the method run used to start the integration. pyOM_cdf.py extents
diagnose by output of model variables to the NetCDF file pyOM.cdf with the same interval.

Using pyOM_gui.py extents the diagnosis by online plotting specified in the template
method make_plot. Examples are provided in ./py_config.

5.2 Time averages

5.2.1 Fortran frontend

Time average diagnostic can be enabled by the respective switch enable_diag_timeave in
the Fortran front end. Output is written to the NetCDF file averages_’itt’.cdf where
itt is the time step number, with frequency given by aveint in seconds in the configura-
tion subroutine set_parameter. The variable avefreq gives the frequency of individual
averaging operations and can be larger than the time step. Note that at the beginning
of the simulation, one or several files with names unfinished_averages_PE_’my_pe’.dta
will be read if they exist, which contain unfinished time averages written at the end of
a proceeding simulation with the same configuration. The variable my_pe is the ordinal
number of each processor. At the end of each simulation, the restart files for the time
averaging will be overwritten.

The variables to be averaged are specified in the template routine set_diagnostics.
Examples are provided in ./for_config.

5.2.2 Python frontend

The Python class pyOM_ave.py implements also time averages. The interval is given by
the parameter snapint of the method run. The variables to be averaged are specified in
the template method set_diagnostics. Examples are provided in ./py_config.

5.3 Variances

5.3.1 Fortran frontend

Second order quantities eddy kinetic energy and eddy density fluxes are calculated by
setting enable_diag_variances to a true value. Output is written to the NetCDF
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file variances_’itt’.cdf where itt is the time step number, with frequency given by
varint in seconds in the configuration subroutine set_parameter. The variable varfreq

gives the frequency of individual averaging operations and can be larger than the time
step. Note that at the beginning of the simulation, one or several files with names
unfinished_variances_PE_’my_pe’.dta will be read if they exist, which contain un-
finished time averages written at the end of a proceeding simulation with the same config-
uration. The variable my_pe is the ordinal number of each processor. At the end of each
simulation, the restart files for the variances will be overwritten.

5.3.2 Python frontend

No such feature implemented.

5.4 Energy diagnostics

5.4.1 Fortran frontend

Globally averaged energies and transfer terms can be diagnosed by setting the logical
variable enable_diag_energy to a true value. Output is written to standard out and
in the NetCDF file energy.cdf. The variable energint specified the number of second
between subsequent output. All related variables are averaged between subsequent output
intervals. The variable energfreq gives the frequency of individual averaging operations
and can be larger than the time step.

5.4.2 Python frontend

There is no python implementation for this diagnosis at the moment.

5.5 Meridional overturning

5.5.1 Fortran frontend

Zonally integrated transports above different (potential) density classes are written in in-
tervals overint to a file over.cdf if the logical variables enable_diag_overturning is
set to a true value. Any existing file of this name will be overwritten during model start.
The variable overfreq gives the frequency of individual transport calculations and can
be larger than the time step. The number of density levels, reference depth for potential
density, and range of density values are set in the subroutine init_diag_overturning in
the file ./for_src/diagnostics/diag_over.f90 and might need to be adjusted. Trans-
ports interpolated to the modified density are also calculated, the results corresponds to
the Quasi-Stokes transport streamfunction by McDougall and McIntosh (2001).

5.5.2 Python frontend

There is no python implementation for this diagnosis at the moment.
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5.6 Particles

5.6.1 Fortran frontend

Particles or floats can be integrated using the switch enable_diag_particles in the
Fortran front end. The initial position of the particles is set in the user defined rou-
tine set_particles. Output is written to the NetCDF file float.cdf with frequency
particles_int. Restart are written to and read from particles_restart.dta.

5.6.2 Python frontend

There is no python implementation at the moment.

6 Continuous equations

The relevant equations for a fluid in Boussinesq approximation on an rotating pseudo–
spherical coordinate system are given here for reference and can e.g. be found in Olbers
et al. (2012). For the moment the hydrostatic and traditional approximation are applied
(which will be relaxed below). The primitive equations for momentum are

∂tu = δu− 1

a cosφ
∂λps , δu = fv − 1

a cosφ
∂λphyd +

uv

a
tanφ+ ∂zAv∂zu−∇ · uu

∂tv = δv − 1

a
∂φps , δv = −fu− 1

a
∂φphyd −

u2

a
tanφ+ ∂zAv∂zv −∇ · uv

0 = −∂zp− gρ/ρ0

with geographical longitude and latitude λ and φ and velocity components u and v in those
directions, respectively. Note that a factor ρ0 is absorbed in the pressure p = ps+phyd, and
that further frictional terms might be added to the time tendencies δu and δv. The non-
linear advection terms are defined below. Vertically integrating the vertical momentum
equation and using a rigid lid yields∫ 0

z

∂zp = −
∫ 0

z

dzgρ/ρ0 = p|0 − p → p = ps + phyd , phyd =

∫ 0

z

dzgρ/ρ0

The continuity equation is given by

1

a cosφ
(∂λu+ ∂φ(v cosφ)) + ∂zw = 0

which can be integrated to obtain w. We use a conservation equation for salinity S

∂tS +
1

a cosφ
(∂λ(uS) + ∂φ(vS cosφ)) + ∂z(wS) = DS

where the right hand side terms in DS are specified later. A corresponding equation for
conservative temperature θ and an equation of state ρ = ρ(S, θ, z) closes the system.
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6.1 Surface pressure

The integration constant ps is only known diagnostically. Vertically integrating the hor-
izontal momentum equation and taking the divergence yields a Poisson equation for the
surface pressure ps:

1

a cosφ

(
∂λ

1

a cosφ
h∂λps + ∂φ cosφ

1

a
h∂φps

)
=

1

a cosφ

(
∂λ

∫ 0

−h
dzδu+ ∂φ cosφ

∫ 0

−h
dzδv

)
which can be solved at each time step. Alternatively it is possible to derive a corresponding
equation for a streamfunction. Vertically averaging the horizontal momentum equation and
taking the curl yields

1

a cosφ
∂t

(
∂λ

1

h

∫ 0

−h
dzv − ∂φ

1

h

∫ 0

−h
dzu cosφ

)
=

1

a cosφ

(
∂λ

1

h

∫ 0

−h
dzδv − ∂φ

1

h

∫ 0

−h
dzδu cosφ

)
which is a Poisson equation for the temporal change of the streamfunction of the depth
averaged flow. An alternative surface boundary formulation to the rigid lid is given by the
implicit free surface. The free surface equation is given by

∂tη +∇h ·
∫ η

−h
uhdz ≈ ∂tη +∇h ·

∫ 0

−h
uhdz = 0

where the free surface η is related to the surface pressure by ps = gη.

6.2 Pseudo-Cartesian coordinate system

Pseudo-Cartesian coordinates are now defined as x = λ/a and y = φ/a. The relevant
equations become

∂tu = δu− 1

cosφ
∂xps , δu = fv − 1

cosφ
∂xphyd +

uv

a
tanφ−∇ · uu+ ∂zAv∂zu

∂tv = δv − ∂yps , δv = −fu− ∂yphyd −
u2

a
tanφ+ ∂zAv∂zv −∇ · uv

∂tS = −∇ · uS +DS , ∇ · uS =
1

cosφ
(∂x(uS) + ∂y(vS cosφ)) + ∂z(wS)

0 =
1

cosφ
(∂xu+ ∂y(v cosφ)) + ∂zw

0 = −
(
∂x

1

cosφ
h∂xps + ∂yh cosφ∂yps

)
+

(
∂x

∫ 0

−h
dzδu+ ∂y cosφ

∫ 0

−h
dzδv

)
0 = −∂t

(
∂x

1

h

∫ 0

−h
dzv − ∂y

1

h

∫ 0

−h
dzu cosφ

)
+ ∂x

1

h

∫ 0

−h
dzδv − ∂y

1

h

∫ 0

−h
dzδu cosφ

0 = phyd −
∫ 0

z

dzgρ/ρ0
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6.3 Thermodynamics

We use either the 48-term TEOS equation of state or a model equation of state from Vallis
(2006)

ρ = p0/c
2
s,0 − ρ0βT (1 + γ?p0)(θ − θ0)− ρ0β

?
T (θ − θ0)2/2 + ρ0βS(S − S0)

with p0 = −gρ0z, and parameters

ρ0 = 1024 kg/m3 , θ0 = 9.85 oC , S0 = 35 , g = 9.81 m/s2 , cs,0 = 1490.0 m/s

βT = 1.67× 10−4 K−1 , β?T = 10−5 K−2 , βS = 0.78× 10−3 , γ? = 1.1× 10−8 ms2/kg

or a simple linear equation of state. The derivatives of density with respect to θ and S are
given by

∂ρ

∂θ
= ρ0 (−βT + βTγ

?gρ0z − β?T (θ − θ0))

∂ρ

∂S
= ρ0βS

Dynamic enthalpy is given by

Hd(S, θ, z) = −g/ρ0

∫ 0

z

ρ(S, θ, z′)dz′

= +gz2/2

(
− g

c2
s,0

+ βTgρ0γ
?(θ − θ0)

)
+ gz

(
−βT (θ − θ0)− β?T (θ − θ0)2/2 + βS(S − S0)

)
with

∂Hd

∂θ
= − g

ρ0

∫ 0

z

∂ρ

∂θ
dz′ = gz(−βT − β?T (θ − θ0) + βTγ

?gρ0
z

2
)

∂Hd

∂θ
= − g

ρ0

∫ 0

z

∂ρ

∂S
dz′ = gzβS

6.4 Non-hydrostatic terms

The hydrostatic and traditional approximation was applied above. Without these the
momentum equation becomes

∂tu = − 1

cosφ
∂x(ps + phyd + pres) + fv − fhw − u ·∇u+

uv

a
tanφ− uw

a

∂tv = −∂y(ps + phyd + pres)− fu− u ·∇v − u2

a
tanφ− vw

a

∂tw = −∂zpres + fhu− u ·∇w +
u2 + v2

a

22



plus frictional terms. fh = 2ω cosφ relates to the horizontal component of the Coriolis force.
pres is the non-hydrostatic pressure contribution, which is calculated from the (uncorrected)
total divergence of the flow. Note that the last terms on the right hand side of the lateral
momentum equations are usually neglected in the pseudo-spherical coordinate system. For
consistency, the metric term in the vertical momentum equation should also be neglected.

7 Discretization

7.1 Numerical grids

7.1.1 Spatial grid

b(i−1,j)

∆x

v(i,j)

b(i,j) u(i,j) u(i+1,j) 

b(i,j+1)

v(i,j−1)

u(i−1,j) b(i+1,j)

Figure 1: C-grid

All variables are discretized on an Arakawa C-grid. Pressure p and density ρ are
centered in a tracer box. On the eastern, northern and upper sides of these boxes, the
zonal, meridional and vertical velocities are placed. The horizontal grid arrangement is
shown in Fig. 1. Advective fluxes of density across the eastern cell border, FE

i,j,k and the
corresponding fluxes across the meridional and vertical boundary can be computed as

FE
i,j,k = ∆x∆z ui,j,k(bi,j,k + bi+1,j,k)/2

FN
i,j,k = ∆x∆z vi,j,k(bi,j,k + bi,j+1,k)/2

F T
i,j,k = ∆x2wi,j,k(bi,j,k + bi,j,k+1)/2

Note that this discretisation represents the standard second order scheme, but that other
higher order discretisation are possible. It is also obvious that diffusive fluxes can be
discretised in a similar way. In any case, however, the convergence of these fluxes leads to
a change in density content in the grid cell

(∆x2∆z)∂tbi,j,k = (FE
i,j,k − FE

i−1,j,k) + (FN
i,j,k − FN

i,j−1,k) + (F T
i,j,k − F T

i,j,k−1)

It is clear that fluxes of density across the boundaries must be set to zero. For momentum,
free-slip or no-slip boundary conditions can be used.
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7.1.2 Non-equidistant spatial grid

∆

zt_k

zt_k+1

zw_k

zw_k−1

zt_k−1

zw_k

∆ zt_k

Figure 2: Non-equidistant spatial grid

We count all three spatial indices positive in the respective direction. This also holds
for the vertical coordinate. Tracer such as temperature θ is given at points ztk. Above ztk
ends the grid cell at the level zwk which is given by zwk = (ztk+1 + ztk)/2. The grid box
size for the tracer is thus ∆ztk = zwk − zwk−1 and we also define ∆zwk = ztk+1 − ztk.
Figure 2 shows the configuration on the grid. The vertical velocity is defined at zwk and
is thus in the center of its box, while the tracer point ztk is displaced relative to the center
of its box for a non equidistant grid. This is sometimes called a u− centered grid. The
grid in i/x and j/y direction follow equivalent rules. The grid sizes ∆ztk, ∆xti and ∆ytj
are specified for each model configuration, from which all levels ztk and zwk and zonal
positions xti, xui, etc can be derived. The sea surface is at zwN = 0 m, where N is the
number of vertical levels.

7.1.3 Time stepping

To integrate uh an Adam-Bashforth scheme is used but Euler forward for the mixing
terms.

un+1
h = unh + ∆t

(
δunmix + A1δu

n − A2δu
n−1 −∇hp

n+1
s

)
with A1 = 1.5 + ε, A2 = 0.5 + ε and ε = 0.1, and where

δun = fvn +
unvn

a
tanφ− un ·∇un − 1

cosφ
∂xp

n
hyd
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δvn = −fun − unun

a
tanφ− un ·∇vn − ∂ypnhyd

δunmix = ∂zAv∂zu
n+1 + ∇h · Ah∇hu

n − run

δvnmix = ∂zAv∂zv
n+1 + ∇h · Ah∇hv

n − rvn

Similar for T and S.

7.1.4 Array dimensions and parallelization

All physical field quantities are discretized only for the domain of the respective processor,
which leads to full scalability of the code in terms of memory demands. Array dimensions
are of course identical in Fortran and Python front end, but the referencing of the variables
is slightly different. First, Fortran array dimensions are detailed: In the Fortran frontend,
the total zonal (meridional, vertical) dimension is from 1 to nx (ny, nz). The domain of
a processor extends from is_pe to ie_pe in zonal direction and from js_pe to je_pe in
meridional direction, and over the full depth. If there is only one processor is_pe = 1 and
ie_pe = nx and similar for the meridional coordinate. In any case, the actual dimension
of each physical variable extents from is_pe-onx to ie_pe+onx, where onx denotes the
number of overlapping points between domains in zonal direction and is set currently to 2.
The meridional dimension extents from js_pe-onx to je_pe+onx, with identical parameter
onx as for the zonal direction. The overlapping points in each direction are used to store
the respective information of the neighboring processors during memory exchange, which
is done at the end of each time step.

The python module numpy does not allow numerical arrays with other start index as
zero. Therefore, the index of a physical dimension needs to be shifted accordingly to access
the Fortran arrays in the Python frontend. There are many examples how this is done in
the sample configurations.

7.2 External mode

7.2.1 Surface pressure formulation

To solve for the pressure field for a rigid lid

∂x
1

cosφ
h∂xps + ∂yh cosφ∂yps = ∂x

∫ 0

−h
dzδu+ ∂y cosφ

∫ 0

−h
dzδv

is inverted to yield ps at each time step. The following algorithm is used

u∗h = unh + ∆t
(
δunmix + A1δu

n − A2δu
n−1
)

∇h · h∇hp
n+1
s =

1

∆t
∇h ·

∫ 0

−h
dzu∗

un+1
h = unh −∆t∇hp

n+1
s
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where δumix denote velocity changes related to friction which are excluded from the Adam-
Bashforth time stepping. This scheme is identical to MITgcm. The Poisson equation is
solved with a simple conjugate gradient solver. Problematic are eigenvalues near zero of
the matrix to be inverted in certain configurations, such the solver diverges. This becomes
even worse using a preconditioner.

7.2.2 Free surface formulation

To solve for the surface pressure for a free surface

∂tps + g∇h ·
∫ 0

−h
uhdz = 0 , pn+1

s = pns − g∆t∇h ·
∫ 0

−h
un+1
h dz

the following algorithm is used

u∗h = unh + ∆t
(
δunmix + A1δu

n − A2δu
n−1
)

p∗s = εpns − g∆t∇h ·
∫ 0

−h
u∗hdz

∇h · h∇hp
n+1
s − pn+1

s

ε

g∆t2
= −p∗s

1

g∆t2
=

1

∆t
∇h ·

∫ 0

−h
dzu∗ − pns

ε

g∆t2

For ε = 0 this becomes the rigid lid version. However, ε = 1 converges often much faster.
Problematic are the conservation properties in the uppermost grid boxes.

7.2.3 Streamfunction formulation

The transport streamfunction ψ is given by

1

cosφ

(
∂x

1

h

1

cosφ
∂x∂tψ + ∂y

1

h
cosφ∂y∂tψ

)
=

1

cosφ

(
∂x

1

h

∫ 0

−h
dzδv − ∂y

1

h

∫ 0

−h
dzδu cosφ

)
with

1

cosφ
∂xψ =

∫ 0

−h
dzv , − ∂yψ =

∫ 0

−h
dzu

The following algorithm is used

∇h ·
1

h
∇hδψ

n = ∇¬ h ·
1

h

∫ 0

−h
dz
(
δunmix + A1δu

n − A2δu
n−1
)

ψn+1 = ψn + ∆tδψn

or with AB. ψ is defined on the vorticity grid with

(ψi,j − ψi−1,j)

cosφuj∆xti
=

∫ 0

−h
dzvij , − (ψi,j − ψi,j−1)

∆ytj
=

∫ 0

−h
dzuij
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and

∇¬ h ·
1

h

∫ 0

−h
dzδu =

1/hvi+1,j

∫
dzδvi+1,j − 1/hvij

∫
dzδvi,j

cosφuj∆xui

−
cosφtj+1/h

u
i,j+1

∫
dzδui,j+1 − cosφtj1/h

u
ij

∫
dzδui,j

cosφuj∆yuj

∇h ·
1

h
∇hδψ

n =

(ψi+1,j−ψi,j)

hvi+1,j cosφuj∆xti+1
− (ψi,j−ψi−1,j)

hvij cosφuj∆xti

cosφuj∆xui

+
cosφtj+1

(ψi,j+1−ψi,j)

hui,j+1∆ytj+1
− cosφtj

(ψi,j−ψi,j−1)

huij∆ytj

cosφuj∆yuj

=
(ψi+1,j − ψi,j)

hvi+1,j(cosφuj)2∆xti+1∆xui
− (ψi,j − ψi−1,j)

hvij(cosφuj)2∆xti∆xui

+
cosφtj+1

cosφuj

(ψi,j+1 − ψi,j)
hui,j+1∆ytj+1∆yuj

− cosφtj
cosφuj

(ψi,j − ψi,j−1)

huij∆ytj∆yuj

The surface pressure contribution to the forcing is

∇¬ h ·∇hps =
(pi+1,j+1 − pi+1,j)/∆yuj − (pi,j+1 − pij)/∆yuj

cosφuj∆xui

−(pi+1,j+1 − pi,j+1)/(∆xui)− (pi+1,j − pi,j)/(∆xui)
cosφuj∆yuj

= 0

The Poisson equation is solved using a conjugate gradient solver with simple preconditioner
taken from MOM.

7.2.4 Island integrals for streamfunction

Island integrals can be treated as follows: Consider the vertically integrated momentum
equation

1/h∂t

∫ 0

−h
uhdz = 1/h

∫ 0

−h
dzδu−∇hps = 1/h∂t∇¬ψ

For a closed line integral e.g. around an island, the surface pressure contribution drops∫
C

1/h d` ·∇¬∂tψ =

∫
C

1/h d` ·
∫ 0

−h
dzδu

This relation holds for each island with number n and perimeter Cn. Now we consider the
superposition

ψ = ψ0(t,xh) +
∑
n

µn(t)ψn(xh)
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with ψ0 = 0 along all boundaries, and ψn = const along Cn but ψn = 0 along Cm6=n and
with

∇h ·
1

h
∇hψn = 0 , ∇h ·

1

h
∇h∂tψ0 = ∇¬ h ·

1

h

∫ 0

−h
dzδu

The first relation is time independent and is solved only once, the second is easily solved
with simple Dirichlet boundary conditions. Using the superposition for ψ in the island
integrals yields∑

i

(∂tµi)

∫
Cn

1/h d` ·∇¬ψi =

∫
Cn

1/h d` ·
∫ 0

−h
dzδu−

∫
Cn

1/hd` · ∂t∇¬ψ0

This can be solved for each island integral along Cn and yields an algebraic system for all
∂tµi.

7.3 Discrete kinetic energy

7.3.1 Coriolis term

A way to obtain consistent Coriolis terms is the following from MITgcm.

∂tuij + ... = 0.25(fij
∆xti
∆xui

(vi,j + vi,j−1) + fi+1,j
∆xti+1

∆xui
(vi+1,j + vi+1,j−1))

∂tvij + ... = −0.25(fij
∆ytj cosφtj
cosφuj∆yuj

(ui,j + ui−1,j) + fi,j+1
∆ytj+1 cosφtj+1

cosφuj∆yuj
(ui,j+1 + ui−1,j+1))

or

∂tuij + ... = 0.25(fijA
t
ij(vij + vi,j−1) + fi+1,jA

t
i+1,j(vi+1,j + vi+1,j−1))/Auij

∂tvij + ... = −0.25(fijA
t
ij(uij + ui−1,j) + fi,j+1A

t
i,j+1(ui,j+1 + ui−1,j+1))/Avij

with

Atij = ∆ytj∆xti cosφtj , A
u
ij = ∆ytj∆xui cosφtj , A

v
ij = ∆yuj∆xti cosφuj

Integrating u2 horizontally on the U grid and v2 on the V grid we obtain∑
ij

uij(fijA
t
ij(vij + vi,j−1) + fi+1,jA

t
i+1,j(vi+1,j + vi+1,j−1))

−
∑
ij

vij(fijA
t
ij(uij + ui−1,j) + fi,j+1A

t
i,j+1(ui,j+1 + ui−1,j+1)) = 0

by shifting the sums. Thus, the Coriolis term discretized in this way does no work.
The non-hydrostatic additional terms are

∂tuijk + ... = ...− 0.25(fhijA
t
ij(wijk + wij,k−1) + fhi+1,jA

t
i+1,j(wi+1,jk + wi+1,j,k−1))/Auij

∂twijk + ... = ...+ 0.25(fhij∆ztk(ui,j,k + ui−1,j,k) + fhij∆ztk+1(ui,j,k+1 + ui−1,j,k+1))/∆zwk
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with the horizontal Coriolis parameter fh. Integrating u2 globally on the u grid and w2 on
the w grid we obtain

−
∑
ijk

(fhijA
t
ij∆ztkuijk(wijk + wij,k−1) + fhi+1,jA

t
i+1,j∆ztkuijk(wi+1,jk + wi+1,j,k−1))

+
∑
ijk

(fhijA
t
ij∆ztkwijk(ui,j,k + ui−1,j,k) + fhijA

t
ij∆ztk+1wijk(ui,j,k+1 + ui−1,j,k+1)) = 0

by shifting the sums.

7.3.2 Metric terms

The metric terms uva−1 tanφ and −u2a−1 tanφ are discretized like in the MITgcm as

∂tuij + ... = 0.125a−1 tanφtj((uij + ui−1,j)A
t
ij(vij + vi,j−1) + (ui+1,j + ui,j)A

t
i+1,j(vi+1,j + vi+1,j−1))/Auij

= 0.125a−1 tanφtj(
∆xti
∆xui

(uij + ui−1,j)(vij + vi,j−1) +
∆xti+1

∆xui
(ui+1,j + ui,j)(vi+1,j + vi+1,j−1))

∂tvij + ... = −0.125a−1(Atij tanφtj(uij + ui−1,j)
2 + Ati,j+1 tanφtj+1(ui,j+1 + ui−1,j+1)2)/Avij

= −0.125a−1(
∆ytj cosφtj
cosφuj∆yuj

tanφtj(uij + ui−1,j)
2

+
∆ytj+1 cosφtj+1

cosφuj∆yuj
tanφtj+1(ui,j+1 + ui−1,j+1)2)

The non-hydrostatic metric terms in the vertical momentum equation are

∂twijk + ... = 0.125a−1
(
∆ztk (ui,j,k + ui−1,j,k)

2 + ∆ztk+1 (ui,j,k+1 + ui−1,j,k+1)2) /∆zwk
+0.125a−1

(
∆ztk (vi,j,k + vi,j−1,k)

2 + ∆ztk+1 (vi,j,k+1 + vi,j−1,k+1)2) /∆zwk
They should be balanced by corresponding terms in the lateral momentum equations,
which are, however, usually neglected in the pseudo-spherical approximation. Thus, we
also neglect all metric terms in the vertical momentum quation.

7.3.3 Momentum advection

A kinetic energy conserving momentum advection scheme is given by

u ·∇u = (δiU
i
ui + δjV

i
uj)/Auij + δkW

i
uk/(∆ztkA

u
ij)

u ·∇v = (δiU
j
vi + δjV

j
vj)/Avij + δkW

j
vk/(∆ztkA

v
ij)

with Uijk = ∆ytjuijk and Vijk = ∆xti cosφtjvijk and W = wAtij. Or write as

u ·∇u = (F u
ij − F u

i−1,j)/A
u
ij + (F v

ij − F v
i,j−1)/Auij + δkW

i
uk/(∆ztkA

u
ij)

F u
ij = 0.25(∆ytjui+1,j + ∆ytjui,j)(ui+1,j + uij)

F v
ij = 0.25x(∆xti cosφtjvi+1,j + ∆xti cosφtjvi,j)(ui,j+1 + uij)
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7.3.4 Vertical dissipation

For the dissipation due to implicit vertical friction u∂zAv∂zu = ∂zAv∂zu
2/2−Av(∂zu)2 we

obtain

unk(Ak(u
n+1
k+1 − u

n+1
k )/∆zwk − Ak−1(un+1

k − un+1
k−1)/∆zwk−1)/∆ztk =

0.5(Ak(u
n+1
k+1u

n
k+1 − un+1

k unk)/∆zwk − Ak−1(un+1
k unk − un+1

k−1u
n
k−1)/∆zwk−1)/∆ztk

−0.5(Aku
n+1
k unk/∆zwk + Ak−1u

n+1
k unk/∆zwk−1)/∆ztk

+(Aku
n
ku

n+1
k+1/∆zwk + Ak−1u

n
ku

n+1
k−1/∆zwk−1)/∆ztk

−0.5(Aku
n+1
k+1u

n
k+1/∆zwk + Ak−1u

n+1
k−1u

n
k−1/∆zwk−1)/∆ztk

so a flux of KE

∂zA∂zu
2/2 = 0.5(Ak(u2

k+1 − u2
k)/∆zwk − Ak−1(u2

k − u2
k−1)/∆zwk−1)/∆ztk

i

and a dissipation term

−(Aku
n+1
k unk/∆zwk + Ak−1u

n+1
k unk/∆zwk−1) + (Aku

n
ku

n+1
k+1/∆zwk + Ak−1u

n
ku

n+1
k−1/∆zwk−1)

= Aku
n
k(un+1

k+1 − u
n+1
k )/∆zwk − unkAk−1(un+1

k − un+1
k−1)/∆zwk−1 = unk(Fk − Fk−1)

plus

+(Akukuk+1/∆zwk + Ak−1ukuk−1/∆zwk−1)− (Aku
2
k+1/∆zwk + Ak−1u

2
k−1/∆zwk−1)

= −uk+1Ak(uk+1 − uk)/∆zwk + uk−1Ak−1(uk − uk−1)/∆zwk−1 = −uk+1Fk + uk−1Fk−1

such that

−A(∂zu)2 = −0.5((uk+1 − uk)Fk + (uk − uk−1)Fk−1)
i
/∆ztk < 0

and similar for v. At the surface and the bottom the fluxes out/in the domain should be
taken out of the dissipation. At k = 1

uk(Ak(uk+1 − uk)/∆zwk − Fb)/∆ztk =

0.5(Ak(u
2
k+1 − u2

k)/∆zwk)/∆ztk − ukFb/∆ztk − 0.5(uk+1 − uk)Fk/∆ztk
and at k = N

uk(Ft − Ak−1(uk − uk−1)/∆zwk−1)/∆ztk =

ukFt/∆ztk − 0.5Ak−1(u2
k − u2

k−1)/∆zwk−1/∆ztk − 0.5(uk − uk−1)Fk−1/∆ztk

Integrate over z

0.5(u2 − u1)F1 +
N−1∑
k=2

0.5((uk+1 − uk)Fk + (uk − uk−1)Fk−1) + 0.5(uN − uN−1)FN−1 =

N−1∑
k=1

0.5Fkuk+1 −
N−1∑
k=1

0.5ukFk +
N∑
k=2

0.5Fk−1uk −
N∑
k=2

0.5uk−1Fk−1 =
N∑
k=2

Fk−1(uk − uk−1)

=
N−1∑
k=1

Fk(uk+1 − uk)
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with F0 = FN = 0. In the TKE equation on the W grid it is thus adequate to add

Fk(unk+1 − unk)/∆zwk
i

as forcing by vertical dissipation.

7.3.5 Dissipation by Rayleigh friction

Rayleigh friction −ru in the momentum equation yields −ru2 − rv2 as energy sink. The
discrete form interpolated horizontally on T grid is

Sijk = −r0.5(u2
i,j,k + u2

i−1,j,k)− r0.5(v2
i,j,k + v2

i,j−1,k)

Integrate vertically

N∑
k=1

Sijk∆ztk = −0.5r
N∑
k=1

∆ztk(u
2
i,j,k + u2

i−1,j,k + v2
i,j,k + v2

i,j−1,k)

Integrate also on W grid

0.5∆zw0Sij1 +
N−1∑
k=1

0.5(Sijk + Si,j,k+1)∆zwk + 0.5∆zwNSijN

= 0.5Sij,1(∆zw0 + ∆zw1) + 0.5
N−1∑
k=2

Sijk(∆zwk + ∆zwk−1) + 0.5Si,j,N(∆zwN−1 + ∆zwN) =
N∑
k=1

Sijk∆ztk

with zwk = (ztk+1 + ztk)/2 and ∆zwk = ztk+1 − ztk and ∆ztk = zwk − zwk−1 = (ztk+1 −
ztk−1)/2 and 0.5(∆zwk + ∆zwk−1) = 0.5(ztk+1 − ztk−1) = ∆ztk. It is thus adequate to
add

−0.5
∆zw0

∆zw1

Sij1 − 0.5(Sij1 + Si,j,2) for k = 1 , − 0.5(Sijk + Si,j,k+1) for k = 2, N − 1 , − SijN for k = N

in the TKE equation as forcing, since we do not want to integrate k = 0 for TKE.

7.3.6 Lateral dissipation

For the lateral friction terms u∇A ·∇u = ∇ · A∇u2/2− A(∇u)2 we consider

∇A ·∇u = (F x
ij − F x

i−1,j)/(cosφtj∆xui) + (F y
i,j − F

y
i,j−1)/(cosφtj∆ytj)

with

F x
ij = Aij(ui+1,j − ui,j)/(cosφtj∆xti+1) , F y

i,j = Aij(ui,j+1 − ui,j)/∆yuj cosφuj
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and thus

uij(F
x
ij − F x

i−1,j) =

Aiuij(ui+1,j − ui,j)/(cosφtj∆xti+1)− Ai−1uij(ui,j − ui−1,j)/(cosφtj∆xti) =

0.5(Ai(u
2
i+1,j − u2

i,j)/(cosφtj∆xti+1)− Ai−1(u2
i,j − u2

i−1,j)/(cosφtj∆xti))

−0.5Aiu
2
i+1,j/(cosφtj∆xti+1) + Aiuijui+1,j/(cosφtj∆xti+1)− 0.5Aiu

2
i,j/(cosφtj∆xti+1)

−0.5Ai−1u
2
i,j(cosφtj∆xti)− 0.5Ai−1u

2
i−1,j/(cosφtj∆xti) + Ai−1uijui−1,j/(cosφtj∆xti)

uij(F
x
ij − F x

i−1,j)/(cosφtj∆xui) = ∂xA∂xu
2/2

−0.5(ui+1,j − uij)F x
ij/(cosφtj∆xui)− 0.5(uij − ui−1,j)F

x
i−1,j/(cosφtj∆xui)

and for F y
ij

uij(F
y
i,j − F

y
i,j−1) = uij(Aij(ui,j+1 − ui,j)/∆yuj cosφuj − Ai,j−1(ui,j − ui,j−1)/∆yuj−1 cosφuj−1

uij(F
y
ij − F

y
i,j−1)/(cosφtj∆ytj) = ∂yA∂yu

2/2

−0.5(ui,j+1 − uij)F y
ij/(cosφtj∆ytj)− 0.5(uij − ui,j−1)F y

i,j−1/(cosφtj∆ytj)

so that

A(∇u)2 = 0.5(ui+1,j − ui,j)F x
ij + (ui,j − ui−1,j)F x

i−1,j

i
/(cosφtj∆xui)

+0.5(ui,j+1 − ui,j)F y
ij + (ui,j − ui,j−1)F y

i,j−1

i
/(cosφtj∆ytj) > 0

and for v with

∇A ·∇v = (F x
ij − F x

i−1,j)/(cosφuj∆xti) + (F y
i,j − F x

i,j−1)/(cosφuj∆yuj)

F x
ij = Ai(ui+1,j − ui,j)/(cosφuj∆xui) , F

y
i,j = Ai(ui,j+1 − ui,j)/∆ytj+1 cosφtj+1

yields

A(∇v)2 = 0.5(vi+1,j − vi,j)F x
ij + (vi,j − vi−1,j)F x

i−1,j

i
/(cosφuj∆xti)

+0.5(vi,j+1 − vi,j)F y
ij + (vi,j − vi,j−1)F y

i,j−1

i
/(cosφuj∆yuj) > 0

For free slip fluxes are simply zero at the boundaries, for no-slip things are more compli-
cated. Vertical interpolation on W grid as for Rayleigh friction.

7.4 Biharmonic friction

Biharmonic friction is given by

∂tu = ...−∇ · A1/2∇∇ · A1/2∇u

and similar for v. Its effect on energy is given by

u∂tu = ...−∇ ·
(
uA1/2∇∇ · A1/2∇u

)
+ A1/2∇

(
∇ · A1/2∇u

)
·∇u

Now with A1/2(∇
(
∇ · A1/2∇u

)
) ·∇u = ∇ ·

(
∇ · A1/2∇u

)
A1/2∇u−

(
∇ · A1/2∇u

)2

u∂tu = ...−∇ ·
[
uA1/2∇

(
∇ · A1/2∇u

)
−
(
∇ · A1/2∇u

)
A1/2∇u

]
−
(
∇ · A1/2∇u

)2

The last term is sign-definite and the dissipation rate by biharmonic friction.
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7.4.1 Buoyancy work

Pressure work is

B = −uij(pi+1,j − pi,j)/(∆xui cosφtj)
i
− vij(pi,j+1 − pij)/∆yuj

j

and for

−u ·∇p = −∇ · (up) + p∇ · u = −∇ · (up)− p∂zw = −∇ · (up)− ∂zpw + w∂zp

we get for ∇ · (up)

(F x
ij − F x

i−1,j)/(∆xti cosφtj) + (F y
ij − F

y
i,j−1)/(∆ytj cosφtj)

with

F x
ij = (pij + pi+1,j)/2uij , F y

ij = (pij + pi,j+1)/2vij cosφuj

Continuity equation is given by

(wk − wk−1)/∆ztk + (ui,j,k − ui−1,j,k)/(cosφtj∆xti) + (cosφujvi,j,k − cosφuj−1vi,j−1,k)/(cosφtj∆ytj) = 0

Simpler for constant ∆x, ∆y

u ·∇p = uij
(pi+1,j − pi,j)

∆x

i

+ vij
(pi,j+1 − pij)

∆y

j

= 0.5uij
(pi+1,j − pi,j)

∆x
+ 0.5ui−1,j

(pi,j − pi−1,j)

∆x
+ 0.5vij

(pi,j+1 − pij)
∆y

+ 0.5vi,j−1
(pi,j − pi,j−1)

∆y

= 0.5uij
(pi+1,j + pi,j)

∆x
− 0.5ui−1,j

(pi,j + pi−1,j)

∆x
− uij

pi,j
∆x

+ ui−1,j
pi,j
∆x

+ ...

= ∇ · (up) + pij(wk − wk−1)/∆ztk

When we sum the last term over k

Nz∑
k=1

∆ztkpk(wk − wk−1)/∆ztk =
Nz∑
k=1

pkwk −
Nz∑
k=2

pkwk−1 = pNwN +
Nz−1∑
k=1

(pk − pk+1)wk

or we write

u ·∇p = ∇ · (up) + (0.5(pk+1 + pk)wk − 0.5(pk + pk−1)wk−1)/∆ztk

+(−0.5(pk+1 − pk)wk − 0.5(pk − pk−1)wk−1)/∆ztk

now use ∂zp = −gρ/ρ0, or (pk+1 − pk)/∆zwk = −0.5g(ρk + ρk+1)/ρ0

u ·∇p = ∇ · (up) + ∂z(pw) + 0.25g/ρ0(
∆zwk
∆ztk

(ρk+1 + ρk)wk +
∆zwk−1

∆ztk
(ρk + ρk−1)wk−1)
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With ∇ · (up)

(F x
ij − F x

i−1,j)/(∆x) + (F y
ij − F

y
i,j−1)/(∆y)

= 0.5((pi+1,j + pi,j)uij − (pi,j + pi−1,j)ui−1j)/∆x+ 0.5((pij + pi,j+1)vij − (pi,j−1 + pi,j)vi,j−1)/∆y

with

F x
ij = 0.5(pi+1,j + pi,j)uij , F y

ij = 0.5(pij + pi,j+1)vij

and with ∇ · u

(ui,j,k − ui−1,j,k)/∆x+ (vi,j,k − vi,j−1,k)/∆y = −(wk − wk−1)/∆ztk

7.5 Discrete potential energy and dynamic enthalpy

7.5.1 Potential energy

Potential energy P = gρz/ρ0 is given by

∂tP + ∇ · uP = g
dρ

dt
z/ρ0 + gρw/ρ0 = ∂z(g/ρ0Kvz∂zρ)− g/ρ0Kv∂zρ+ gρw/ρ0

With non-linear equation of state we have

dP

dt
=

g

ρ0

(zρT∂zK∂zT + zρS∂zK∂zS) + gρw/ρ0 − g2zρpw

The term −g2zρpw results from advection since

ρT∂tθ + ρTu ·∇θ + ρS∂tS + ρSu ·∇S = ρS∂z(K∂zS) + ρT∂z(K∂zθ)

=
dρ

dt
− ρp

dp

dt

with

dρ

dt
= ρT

dθ

dt
+ ρS

dS

dt
+ ρp

dp

dt

It is an exchange with mean dynamic internal energy and drops for dynamic enthalpy. The
right hand side can be written as

dP

dt
=

g

ρ0

(∂zzρTK∂zT + ∂zzρSK∂zS)− g

ρ0

K(ρT∂zT + ρS∂zS)

− g

ρ0

zK(∂zT∂zρT + ∂zS∂zρS) + gρw/ρ0 − g2zρpw

The first term is a flux, the second the usual exchange with TKE, the third term is cabelling.
For the equation of state by Vallis it becomes negative (see below).
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7.5.2 Dynamic enthalpy

For an incompressible equation of state dynamic enthalpy Hd = −g
∫ 0

z
ρ(S, θ, z′)/ρ0dz

′ is
identical to potential energy, since ρ does not depend on z

Hd = −gρ(S, θ)/ρ0

∫ 0

z

dz′ = gρz/ρ0 = P

With compressibility we find

ρ0
d

dt
Hd(S, θ, z) = gρw − gρ̃T

dθ

dt
− gρ̃S

dS

dt

= gρw − ∂z(gρ̃TK∂zθ)− ∂z(gρ̃SK∂zS) + gK∂zθ∂zρ̃T + gK∂zS∂zρ̃S − gρ̃T θ̇ − gρ̃SṠ
d

dt
Hd(S, θ, z) =

gρ

ρ0

w + ∂z(HTK∂zθ) + ∂z(HSK∂zS)−K∂zθ∂zHT −K∂zS∂zHS +HT θ̇ +HSṠ

with ρ̃T =
∫ 0

z
ρT (S, θ, z′)dz′ = −(ρ0/g)∂Hd/∂θ. Using

∂zρ̃|x,y = ∂zρ̃|S,H +
∂ρ̃

∂θ
|S,z∂zθ +

∂ρ̃

∂S
|θ,z∂zS = −ρ+ ρ̃θ∂zθ + ρ̃S∂zS

The exchange terms become

K∂zθ∂zρ̃T +K∂zS∂zρ̃S = −ρTK∂zθ − ρSK∂zS + ρ̃TTK(∂zθ)
2 + 2ρ̃TSK(∂zS)(∂zθ) + ρ̃SSK(∂zS)

The first two are the usual exchange with TKE, the remaining three are cabbeling terms.
For the equation of state by Vallis (2006), only the first of the cabellling terms is active
and ρ̃TTK(∂zθ)

2 < 0 since ρTT = −ρ0β
?
T < 0.

7.5.3 Exchange of potential energy with TKE for a linear equation of state

On a discrete level this becomes

∂zKv∂zρ = (F ρ
k − F

ρ
k−1)/∆ztk , F ρ

k = Kv
k(ρk+1 − ρk)/∆zwk

z∂zKv∂zρ = ztk(F
ρ
k − F

ρ
k−1)/∆ztk

= ((ztk + ztk+1)/2F ρ
k − (ztk + ztk−1)/2F ρ

k−1)/∆ztk

+(ztk/2F
ρ
k − ztk/2F

ρ
k−1)/∆ztk − (ztk+1/2F

ρ
k − ztk−1/2F

ρ
k−1)/∆ztk

= (zwkF
ρ
k − zwk−1F

ρ
k−1)/∆ztk − (∆zwkF

ρ
k + ∆zwk−1F

ρ
k−1)/(2∆ztk)

with zwk = (ztk+1 + ztk)/2 and ∆zwk = ztk+1 − ztk. The second term is the exchange
with TKE, the first is a flux divergence. Integrating the second term over z

0.5
N∑
k=1

(∆zwkF
ρ
k + ∆zwk−1F

ρ
k−1) = 0.5

N∑
k=1

∆zwkF
ρ
k + 0.5

N∑
k=2

∆zwk−1F
ρ
k−1 = 0.5∆zwNF

ρ
N +

N−1∑
k=1

∆zwkF
ρ
k
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and the first also
N∑
k=1

(zwkF
ρ
k − zwk−1F

ρ
k−1) =

N∑
k=1

zwkF
ρ
k −

N−1∑
k=1

zwkF
ρ
k = zwNF

ρ
N = 0

since zwN = 0. Check by summing

N∑
k=1

ztk(F
ρ
k − F

ρ
k−1) = ztNF

ρ
N −

N−1∑
k=1

∆zwkF
ρ
k

The forcing which enters the TKE equation defined on W grid is then simply

F ρ
k for k = 1, N − 1 , F ρ

N for k = N

It is possible that the surface density flux F ρ
N drains out the TKE at the surface. This is

because we need to mix the first layer, and this energy has to be taken from somewhere.
We need to increase the TKE forcing or to reduce the surface density flux in such a case.

7.5.4 Exchange of potential energy with TKE for a nonlinear equation of state

With a nonlinear equation of state we have

zρT∂zK∂zT = ztk(ρT )k(F
T
k − F T

k−1)/∆ztk

= ((ztk(ρT )k + ztk+1(ρT )k+1)/2F T
k − (ztk(ρT )k + ztk−1(ρT )k−1)/2F T

k−1)/∆ztk

+(ztk(ρT )k/2F
T
k − ztk(ρT )k/2F

T
k−1)/∆ztk − (ztk+1(ρT )k+1/2F

T
k − ztk−1(ρT )k−1/2F

T
k−1)/∆ztk

and similar for S. The first term is a flux which integrates to zero, since

0.5
N∑
k=1

((ztk(ρT )k + ztk+1(ρT )k+1)F T
k − (ztk(ρT )k + ztk−1(ρT )k−1)F T

k−1) =

0.5(ztN(ρT )N + ztN+1(ρT )N+1)F T
N = zwN(ρT )NF

T
N = 0

for ∂ρT/∂p = 0. For compressible equation of state there is a flux. The second can be
written as

−(ztk+1(ρT )k+1 − ztk(ρT )k)F
T
k /(2∆ztk)− (ztk(ρT )k − ztk−1(ρT )k−1)F T

k−1/(2∆ztk)

Integrate over z

−0.5
N∑
k=1

(ztk+1(ρT )k+1 − ztk(ρT )k)F
T
k − 0.5

N∑
k=1

(ztk(ρT )k − ztk−1(ρT )k−1)F T
k−1

= −0.5(ρT )N∆zwNF
T
N −

N−1∑
k=1

(ztk+1(ρT )k+1 − ztk(ρT )k)F
T
k

The forcing which enters the TKE equation defined on W grid is then

(ztk+1(ρT )k+1 − ztk(ρT )k)

∆zwk
F T
k for k = 1, N − 1 , (ρT )NF

T
N for k = N
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7.5.5 Exchange of dynamic enthalpy with TKE

With compressibility we find

ρ0
d

dt
Hd(S, θ, z) = gρw − gρ̃T∂z(K∂zθ)− gρ̃S∂z(K∂zS)

= gρw − ∂z(gρ̃TK∂zθ)− ∂z(gρ̃SK∂zS) + gK∂zθ∂zρ̃T + gK∂zS∂zρ̃S

with ρ̃T =
∫ 0

z
ρT (S, θ, z′)dz′. On a discrete level this becomes

ρ̃T∂zK∂zT = (ρ̃T )k(F
T
k − F T

k−1)/∆ztk

= (((ρ̃T )k + (ρ̃T )k+1)/2F T
k − ((ρ̃T )k + (ρ̃T )k−1)/2F T

k−1)/∆ztk

−0.5[(ρ̃T )k+1 − (ρ̃T )k]F
T
k /∆ztk − 0.5[(ρ̃T )k − (ρ̃T )k−1]F T

k−1∆ztk

and similar for S. The first term is a flux, the second the exchange with TKE. Integrating
the flux term over depth yields

0.5
N∑
n=1

[((ρ̃T )k + (ρ̃T )k+1)Fk − ((ρ̃T )k + (ρ̃T )k−1)Fk−1]

= 0.5
N∑
n=1

((ρ̃T )k + (ρ̃T )k+1)Fk − 0.5
N−1∑
n=1

((ρ̃T )k+1 + (ρ̃T )k)Fk = 0.5((ρ̃T )N + (ρ̃T )N+1)FN

which only vanishes if ∂ρ/∂p = 0. Integrating the second over depth yields

−0.5
N∑
n=1

[(ρ̃T )k+1 − (ρ̃T )k]F
T
k − 0.5

N∑
n=2

[(ρ̃T )k − (ρ̃T )k−1]F T
k−1

= −0.5[(ρ̃T )N+1 − (ρ̃T )N ]F T
N −

N−1∑
n=1

[(ρ̃T )k+1 − (ρ̃T )k]F
T
k

The forcing which enters the TKE equation defined on W grid is then

−(ρ̃T )k+1 − (ρ̃T )k
∆zwk

F T
k for k = 1, N − 1 , − [(ρ̃T )N+1 − (ρ̃T )N ]F T

N

∆zwN
for k = N

At the surface, the flux contribution adds to

2(ρ̃T )NFN
∆zwN

for k = N

7.5.6 Exchange with TKE by horizontal diffusion

Horizontal diffusion of T and S also affects potential energy for a non-linear equation of
state.

∂xK∂xT = (Fi − Fi+1)/∆xti , Fi = Ki(Ti+1 − Ti)/∆xui
ρT z∂xK∂xT = (ρT )iz(Fi − Fi+1)/∆xti

= z(((ρT )i + (ρT )i+1)/2Fi − z((ρT )i + (ρT )i−1)/2Fi−1)/∆xti

+z((ρT )i/2Fi − (ρT )i/2Fi−1)/∆xti − z((ρT )i+1/2Fi − (ρT )i−1/2Fi−1)/∆xti
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and similar for S. The first term is a flux divergence and integrates to zero. The second
term can be written as

−z((ρT )i+1 − (ρT )i)Fi/(2∆xti)− z((ρT )i − (ρT )i−1)Fi−1/(2∆xti)

This forcing has to be interpolated to the W grid as for the frictional terms. The sign of
the forcing

ρT z∂xK∂xT = ∂x(ρT zK∂xT )− zK∂xT∂xρT = ∂x(ρT zK∂xT )− zK(∂xT )2ρTT

depends on the sign of ρTT . For the equation of state by Vallis (2006) we have ρTT =
−ρ0βTs < 0 and thus

−zK(∂xT )2ρTT < 0

It is thus always a forcing of TKE.

7.5.7 Exchange by isopycnal diffusion

The isopycnal diffusion operator in small slope approximation is given by

∂tT = ...+ ∇ ·K∇T

with

K = Kiso

 1 0 sx
0 1 sy
sx sy s2

x + s2
y

+Kgm

 0 0 −sx
0 0 −sy
sx sy 0


with the isopycnal slopes sx = −∂xρ/∂zρ and sy−∂yρ/∂zρ. The effect of dynamic enthalpy
is given by

ρ0
d

dt
Hd(S, θ, z) = gρw − gρ̃T∇ ·K∇θ − gρ̃S∇ ·K∇S

The isopycnal mixing part can be treated as for horizontal fluxes and vertical mixing. This
also holds for skew the diffusion. The discrete functional for the flux K∇T by Griffies et
al is used for isopycnal mixing and skew diffusion. The vector streamfunction B for the
eddy driven velocity ∇×B is given by

B =

 −Kgmsy
Kgmsx

0

 , ∇×B =

 −∂zKgmsx
−∂zKgmsy

∂xKgmsx + ∂yKgmsy


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7.5.8 Exchange by advective fluxes

Accept for a change in sign, the advective fluxes behave the same as the diffusive ones.

−ρ̃T∂x(uT ) = −∂x(ρ̃TuT ) + uT∂xρ̃T

−ρ̃T∂x(uT ) = −(ρ̃T )i(Fi − Fi+1)

∆xti
= −((ρ̃T )i + (ρ̃T )i+1)/2Fi − ((ρ̃T )i + (ρ̃T )i−1)/2Fi−1

∆xti

+
((ρ̃T )i+1 − (ρ̃T )i)Fi + ((ρ̃T )i − (ρ̃T )i−1)Fi−1

2∆xti

where Fi is the advective zonal flux. The first term is a flux which integrates to zero, the
second is an exchange with TKE. For the vertical flux we have

−ρ̃T∂z(wT ) = −∂z(ρ̃TwT ) + wT∂zρ̃T = −∂z(ρ̃TwT ) + wT (−ρT + ρ̃TT∂zθ + ρ̃TS∂zS)

= −(ρ̃T )k(F
T
k − F T

k−1)/∆ztk

= −
((ρ̃T )k + (ρ̃T )k+1)F T

k − ((ρ̃T )k + (ρ̃T )k−1)F T
k−1

2∆ztk

+
[(ρ̃T )k+1 − (ρ̃T )k]F

T
k + [(ρ̃T )k − (ρ̃T )k−1]F T

k−1

2∆ztk

where Fk is the vertical advective flux. Using

∂zρ̃|x,y = −ρ+ ρ̃θ∂zθ + ρ̃S∂zS

The equation of potential energy P = gρz/ρ0 in the model

∂tP = gρw/ρ0 + ∇ · (..) +KN2 +
(
−g/ρ0∂z(zρT )K∂zθ − g/ρ0∂z(zρS)K∂zS −KN2

)
−g/ρ0z(ρT∇ · (uθ) + ρS∇ · (uS) + ρp∇ · (up0)−∇ · (uρ))

The equation of dynamic enthalpy H = −g/ρ0

∫ 0

z
ρdz′ in the model

∂tH = gρw/ρ0 + ∇ · (..) +KN2 + [g/ρ0∂z(ρ̃T )K∂zθ + g/ρ0∂z(ρ̃S)K∂zS −KN2]

−(−g/ρ0ρ̃T∇ · (uθ)− g/ρ0ρ̃S∇ · (uS) + g/ρ0ρw −∇ · (uH))

7.5.9 Exchange of potential energy with mean kinetic energy

Now calculate

z(∂tρ+ ∇ · uρ) + ∂zwρz = z(∂tρ+ ∇ · uρ) + 0.5(wk(ρk + ρk+1)zwk − wk−1(ρk + ρk−1)zwk−1)/∆ztk

= z(∂tρ+ ∇ · uρ) + ztk0.5(wk(ρk + ρk+1)− wk−1(ρk + ρk−1))/∆ztk

−ztk0.25(wk(ρk + ρk+1)− wk−1(ρk + ρk−1))/∆ztk

+0.25(wk(ρk + ρk+1)ztk+1 − wk−1(ρk + ρk−1)ztk−1)/∆ztk
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= z(∂tρ+ ∇ · uρ+ ∂zwρ)

+0.25(wk(ρk + ρk+1)∆zwk + wk−1(ρk + ρk−1)∆zwk−1)/∆ztk

g/ρ0
dP

dt
= g/ρ0z

dρ

dt
− 0.5(wk(pk+1 − pk) + wk−1(pk − pk−1))/∆ztk

with zwk = (ztk+1 + ztk)/2 and ∆zwk = ztk+1 − ztk and with with (pk+1 − pk)/∆zwk =
−0.5g(ρk + ρk+1)/ρ0. The second term is the exchange with KE. Or different

z(∂tρ+ ∇ · uρ) + ∂zwρz = z(∂tρ+ ∇ · uρ) + 0.5(wk(ztkρk + ztk+1ρk+1)− wk−1(ztkρk + ztk−1ρk−1))/∆ztk

= z(∂tρ+ ∇ · uρ) + ztk0.5(wk(ρk + ρk+1)− wk−1(ρk + ρk−1))/∆ztk

+0.5(wkztk+1ρk+1 − wk−1ztk−1ρk−1)/∆ztk − ztk0.5(wkρk+1 − wk−1ρk−1)/∆ztk

= z(∂tρ+ ∇ · uρ+ ∂zwρ) + 0.5(wkρk+1∆zwk + ρk−1wk−1∆zwk−1)/∆ztk

We integrate over z.

g/ρ0/4
N∑
k=1

(wk(ρk + ρk+1)∆zwk + wk−1(ρk + ρk−1)∆zwk−1)

= g/ρ0/4
N∑
k=1

wk(ρk + ρk+1)∆zwk + g/ρ0/4
N∑
k=2

wk−1(ρk + ρk−1)∆zwk−1 =

= g/ρ0/4wN(ρN + ρN+1)∆zwN + g/ρ0/2
N−1∑
k=1

wk(ρk + ρk+1)∆zwk

= −wN(ps − pN)−
N−1∑
k=1

wk(pk+1 − pk)

Or different

g/ρ0

N∑
k=1

0.5(wkρk+1∆zwk + ρk−1wk−1∆zwk−1) = g/ρ00.5wNρN+1∆zwN + g/ρ0

N−1∑
k=1

0.5wk(ρk+1 + ρk)∆zwk

The exchange in the KE budget becomes

N∑
k=1

pk(wk − wk−1) =
N−1∑
k=1

pkwk −
N−1∑
k=1

pk+1wk =
N−1∑
k=1

wk(pk − pk+1) = 0.5g/ρ0

N−1∑
k=1

wk(ρk + ρk+1)∆zwk

with (pk+1 − pk)/∆zwk = −0.5g(ρk + ρk+1)/ρ0, and is thus identical.

7.5.10 Exchange of dynamic enthalpy with mean kinetic energy

For dynamic enthalpy H = −g/ρ0

∫ 0

z
ρdz′ we have

ρ0
dH

dt
= gρ

dz

dt
− gρ̃T

dT

dt
− gρ̃S

dS

dt
= gρw − gρ̃T

dT

dt
− gρ̃S

dS

dt

On a discrete level this becomes

∂z(Hw) = 0.5(wk(Hk+1 +Hk)− wk−1(Hk +Hk−1))/∆ztk
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7.6 TKE equation and vertical mixing

The TKE equation is given by

∂tE = ∂zκe∂zE − cεE3/2/L−N2κh + κm(∂zuh)
2 + Ah(∇uh)

2

with κm = ckLE
1/2, κe = αtkeκm and κh = κm/Pr with Pr = 6.6Ri and 1 <= Pr <= 10.

7.6.1 TKE at W points

TKE E is defined at W points. Similar for EKE and internal wave energy. Both vertical
diffusion of E and dissipation are treated implicitly. Discrete form is given by

(En
k − En−1

k )/∆t = (Fk − Fk−1)/∆zwk − cεEn
k (En−1

k )1/2/L+ Pk

with Fk = κk(E
n
k+1 − En

k )/∆ztk+1 and κk = 0.5((κe)k+1 + (κe)k), and Pk forcing from
dissipation and buoyancy work. Rewrite as

En
k (1 + cε∆t(E

n−1
k )1/2/L)− (En

k+1 − En
k )

κk∆t

∆ztk+1∆zwk
+ (En

k − En
k−1)

κk−1∆t

∆ztk∆zwk
= En−1

k + Pk∆t

or

AkE
n
k−1 +BkE

n
k + CkE

n
k+1 = En−1

k + Pk∆t

Ck = − δk
∆zwk

, Bk = 1 + cε∆t(E
n−1
k )1/2/L+

δk
∆zwk

+
δk−1

∆zwk
, Ak = − δk−1

∆zwk

with δk = κk∆t
∆ztk+1

. At k = 1, near the bottom we have

AkE
n
k−1 +BkE

n
k + CkE

n
k+1 = En−1

k + Pk∆t− Fb∆t/∆zwk

Ck = − δk
∆zwk

, Bk = 1 + cε∆t(E
n−1
k )1/2/L+

δk
∆zwk

, Ak = 0

Fb is the TKE flux at zt1 = −h+ ∆z1/2, which is not at the bottom. At k = N , near the
surface, the W grid box is only half thick. We have

AkE
n
k−1 +BkE

n
k + CkE

n
k+1 = En−1

k + Pk∆t+ Fs
∆t

0.5∆zwk

Ck = 0 , Bk = 1 + cε∆t(E
n−1
k )1/2/L+

δk−1

0.5∆zwk
, Ak = − δk−1

0.5∆zwk

where Fs is the surface flux of TKE. A Dirichlet boundary condition looks like

En
k (1 + cε∆t(E

n−1
k )1/2/L)− (Esurf − En

k )
δk

0.5∆zwk
+ (En

k − En
k−1)

δk−1

0.5∆zwk
= En−1

k + Pk∆t

AkE
n
k−1 +BkE

n
k + CkE

n
k+1 = En−1

k + Pk∆t+ Esurf
δk

0.5∆zwk

Ck = 0 , Bk = 1 + cε∆t(E
n−1
k )1/2/L+

δk
0.5∆zwk

+
δk−1

0.5∆zwk
, Ak = − δk−1

0.5∆zwk
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7.6.2 Advection for tracer at W grid

We advect tracer on the W grid such as TKE with the following lateral advection velocity

Ui,j,k = 0.5∆ztk+1/∆zwkuk+1 + 0.5∆ztk/∆zwkuk

Ui,j,k = 0.5∆ztk+1/∆zwkuk+1 + ∆ztk/∆zwkuk , k = 1

Ui,j,k = 0.5∆ztk/∆zwkuk , k = N

and similar for V . In case of topography U and V have to be redirected at the bottom.
The vertical velocity is given by continuity

Wi,j,k = Wi,j,k−1 −∆zwk ((Ui,j,k − Ui−1,j,k)/∆xti − (Vi,j,k − Vi,j−1,k)/∆ytj)

For u and v it holds from the streamfunction formalism that

0 =
N∑
n=1

∆ztk ((ui,j,k − ui−1,j,k)/∆xti + (ui,j,k − ui,j−1,k)/∆ytj) = −
N∑
n=1

(wi,j,k − wi,j,k−1) = −wi,j,N

suppressing the cos factors. The same has to hold for U and V

−
N∑
n=1

∆zwk(Wk −Wk−1)/∆zwk = −
N∑
n=1

Wk +
N−1∑
n=0

Wk =

−Wi,j,N =
N∑
n=1

∆zwk(Ui,j,k − Ui−1,j,k)/∆xti +
N∑
n=1

∆zwk(Vi,j,k − Vi,j−1,k)/∆ytj =

N−1∑
n=1

0.5(ui,j,k+1 − ui−1,j,k+1)∆ztk+1/∆xti +
N∑
n=1

0.5(ui,j,k − ui−1,j,k)∆ztk/∆xti

+
N−1∑
n=1

0.5(vi,j,k+1 − vi,j−1,k+1)∆ztk+1/∆ytj +
N∑
n=1

0.5(vi,j,k − vi,j−1,k)∆ztk/∆ytj

+0.5(ui,j,1 − ui−1,j,1)∆zt1/∆xti + 0.5(vi,j,1 − vi,j−1,1)∆zt1/∆ytj

= 0

7.6.3 Implicit vertical mixing at T points

Consider a tracer E defined at T points such as temperature. Vertical diffusion of E is
treated implicitly. Discrete form is given by

(En
k − En−1

k )/∆t = (Fk − Fk−1)/∆ztk − IkEn
k + Pk(E

n−1)

with Fk = κk(E
n
k+1 − En

k )/∆zwk, with a parameter Ik and Pk containing other explicit
terms. Rewrite as

En
k (1 + Ik∆t)− (En

k+1 − En
k )

κk∆t

∆zwk∆ztk
+ (En

k − En
k−1)

κk−1∆t

∆zwk−1∆ztk
= En−1

k + Pk∆t
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or

AkE
n
k−1 +BkE

n
k + CkE

n
k+1 = En−1

k + Pk∆t

Ck = − δk
∆ztk

, Bk = 1 + Ik∆t+
δk

∆ztk
+
δk−1

∆ztk
, Ak = − δk−1

∆ztk

with δk = κk∆t
∆zwk

. At k = 1, at the bottom we have

AkE
n
k−1 +BkE

n
k + CkE

n
k+1 = En−1

k + Pk∆t− Fb∆t/∆ztk

Ck = − δk
∆ztk

, Bk = 1 + Ik∆t+
δk

∆ztk
, Ak = 0

Fb is the flux of E at zw0 = −h. At k = N , at the surface, we have

AkE
n
k−1 +BkE

n
k + CkE

n
k+1 = En−1

k + Pk∆t+ Fs
∆t

∆ztk

Ck = 0 , Bk = 1 + Ik∆t+
δk−1

∆ztk
, Ak = − δk−1

∆ztk

Fs is the flux of E at zwN = 0.
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