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1 Introduction

This is a short documentation of the SPFLAME code. SPFLAME is a successor of the FLAME
code (FLAME Group, 1998) which is an extended version of the GFDL MOM-2.1 code (Pacanowski,
1995). FLAME is an acronym for Family of Linked Atlantic Model Experiments, more details
concerning FLAME (configuration, experiments, papers) can be found at http://www.ifm.uni-
kiel.de/fb/fb1/tm/research/FLAME/index.html. The original MOM-2.1 code, including a very
detailed documentation, can be found at http://www.gfdl.gov/˜kd/MOMwebpages/MOMver2
.html. Several authors have worked on revising the original MOM2-1 code, which then became
the FLAME code (mostly issues of parallelization and implementation of open boundaries),
among them are R. Johannis, R. Redler, J. Dengg and K. Ketelsen. A complete recoding was
done for SPFLAME1, introducing several new features and modules for physical parameteriza-
tions. Most of the new features and modules were taken from GFDL MOM-3 (Pacanowski and
Griffies, 1999). The main purpose of this text is to provide informations about various namelist
variables and switches and a brief overview of the model structure.

However, to start we want to described the major changes with respect to MOM-2. The code
utilizes many new Fortran90 features (where useful), all variables are explicitly declared (instead
of implicit declarations, which are possible in Fortran, but sometime resemble a fizzy source for
errors). The code can be run now in parallel mode, i. e. a horizontal decomposition of the model
domain, in zonal as well as in meridional direction, can be integrated in parallel. Communication
between different processors (PE’s) is realized with the MPI library. Almost all model parameter,
e. g. zonal, meridional and vertical extent of the basin, are not hardwired; instead, they are set by
namelist input and all arrays are dynamically allocated during runtime. Another major change
is the elimination of the “memory window”, which was implemented in MOM-2 to reduce the
memory size of the code. The elimination of the memory window results in a much easier code
structure compared to MOM-2, but, however, in a larger memory requirement. All major arrays
reside now in their full dimension in the memory. They are dimensioned for the horizontal and
vertical extent for each PE domain, such that changing the decomposition of the domain should
not effect the total memory consumption of the model (except for an increase in memory by
overlapping parts of the domains and some small (1D and 2D) arrays which are dimensioned

1 SP was standing originally for Small and Portable with respect to the old code, which was considered to be
an advantage. It is however not very small anymore but still portable to some extent.
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over the full domain). Some new features of the code are listed below. Note that some of them
are taken from MOM-3.1.

• Nested sub domains, integrated in parallel.

• Prognostic, semi–diagnostic or corrected–prognostic model versions (Sheng et al., 2001;
Eden and Greatbatch, 2002).

• Explicit free surface (Griffies et al., 2001) or traditional rigid lid formulation.

• Optional partial bottom cells (Pacanowski and Gnanadesikan, 1998).

• Several alternative advection schemes, i. e. Quicker, FCT, 4.th order, upstream or 2.nd
order centered differences.

• Flux limiter for passive tracers (Lafore et al., 1998).

• Old Redi (1982) or new Griffies (1998) isopycnal mixing scheme.

• TKE vertical mixing scheme after Gaspar et al. (1990).

• Several alternative approximation to the equation of state.

• NetCDF based preparation routines for generating forcing and setup files.

• Convenient NetCDF or fast binary output.

The text is structured as follows. In section 2, the process of compiling is demonstrated. A
“Makefile” is available, allowing an almost automatic compilation. However, some settings have
to be made before compilation, accounting for platform dependencies and some preprocessor
directives. The nested model concept is briefly introduced as well, since it effects the launching
of the model. In section 3 all namelist variables are listed and explained which have to be
adjusted for the integration. In section 4 the directory structure for and the source code itself
is briefly discussed. Section 5 gives a short outline of the process for preparation of forcing and
setup data files, which is also part of this code.

2 Compiling the code

2.1 Makefile

There is a top level Makefile in the main directory (usually “$HOME/spflame”) which invokes
all preprocessing/ compiling/ linking actions by calling (local) Makefile’s in the sub directories in
which the actual source code is located. The top level Makefile will include a template (“Make-
file host”) with platform dependent configurations, including search paths, compiler options,
etc. Currently, tested examples are given in the subdirectory ./configure to run the code on the
following systems:
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• Linux for the Intel f90 (ia32/ia64) compiler on SGI Altix systems, PC–clusters or stand
alone Linux PC’s (file ”configure/Makefile linux”).

• NEC for NEC SX5/SX6 cross compiling systems (file ”configure/Makefile sx5”)

• AIX for IBM AIX systems (file ”configure/Makefile aix”).

• IRIX for SGI IRIX systems (file ”configure/Makefile irix”)

• CRAY/SGI UNICOS/mk for CRAY T3E systems (file ”configure/Makefile t3e”)

• SUN for SunOS systems (file ”configure/Makefile sun”)

• OSF for DIGITAL UNIX (OSF1) systems (file ”configure/Makefile osf”)

Before compiling it is necessary to copy one of these templates to a file named ”Makefile host”
in the main directory, which is then included in the Makefiles. It is also necessary to change the
value of the variable “SPFLAME” in the top level Makefile, which contains the full path of the
main directory in which the code is located (set by default to “$HOME/spflame”). Note that
this variable is defined only once in the first few lines of the top level Makefile and is passed
calling the local Makefile’s in the sub directories. Note that to execute the Makefile’s in the sub
directories without invoking the main Makefile, it is convenient to create an environment (shell)
variable named “SPFLAME” which contains the path of the main directory. After compiling,
the executables can be found in the sub directory “./bin”.

There are several targets in the top level Makefile. Here are the most important targets:

• help: Default. Lists all possible targets.

• spflame: Builds the model executable (“spflame.x”).

• prep routines: Builds executables for the preparation of forcing files.

• converter: Builds executables used for creating NetCDF files from binary output from
SPFLAME.

• tools: . Builds executables useful in handling output NetCDF files, etc.

• clean: Cleaning up all directories after compiling.

2.2 Preprocessor directives

Most of the setup of the model can be controlled by variables and switches set in the namelist
file provided during runtime. They are listed in section 3. However, there are also some global
preprocessor directives affecting the model setup, which enable or disable different code frag-
ments during compile time at the preprocessing stage. The global directives are listed in the
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file “include/options.inc” and can be set therein (not activated directives are, Fortran style–like,
commented out in the file) with one important exception: There are directives determining the
architecture of the machine for which the code is compiled for. One (and only one) of these
directives have to be set. Presently they are set within the platform specific part of the Makefile
(see section 2.1) and can be:

• SX5 host : NEC SX4, SX5 or SX6.

• C90 host : CRAY/SGI T90,C90,SV1

• T3E host : CRAY/SGI T3E.

• IRIX host : SGI IRIX systems.

• ALPHA host : DIGITAL UNIX (OSF1) systems

• LINUX host : Linux with Intel f90 compiler.

• LINUX real8 host : Linux with Intel f90 compiler in double precision.

• AIX host : IBM AIX system

• SUN host : SunOS system

• SR8000 host : a Hitachi SR8000 system

All other global directives have to be set in the file “include/options.inc” which is included at the
beginning of all other source code files (which can be affected by the directives). Note that by
changing the file “include/options.inc” all source code files have to be recompiled (a dependency
which is set in the Makefile’s). Here is a short list of the directives:

• no mpp
Disables all calls of the MPI library. In effect, the MPI library is not needed in that case.

• netcdf diagnostics
Enables NetCDF output. The NetCDF library2 (version 3.0 or higher) has to be linked in
that case.

• netcdf real4
Using this option, it is enforced to write four bytes long (kind=4) real variables in the
NetCDF file. Since the model variables may be at double precision (kind=8), this can
interfere with the (single precision) NetCDF library.

• partial cell
Enables partially filled bottom cells (Pacanowski and Gnanadesikan, 1998).

2 The NetCDF library can be found at http://www.unidata.ucar.edu/packages/netcdf.
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• linear density
Enables a linear equation of state with no pressure dependence.

• MWJ density
Equation of state given by McDougall, Wright and Jackett (2002, submitted manuscript).

• timing and detailed timing
Gives (detailed) information about the time spent in the major subroutines at the end of
the integration.

A single derived directive will be set within “include/options.inc”. This is vector host which
specifies that certain vectorized code fragments should be used in favor to fragments better
suited for scalar codes. Currently, this option will be set only for SX5 host and C90 host. Note,
that also local (with respect to each source code file) directives are used in certain files, mainly
for diagnostic purposes. See the corresponding source files for a description.

2.3 Nested model concept

It is possible to run several nested models with increased horizontal and vertical resolution (child
domain) in parallel to the main model (mother domain). It is also possible to nest further child
domains within the child domains of the mother model. The child domains are driven by open
boundary conditions taken from the corresponding mother domains. Optional two–way nesting
(feedback of the child domain to the mother domain) is realized by using the semi–prognostic
approach, as described in Eden and Greatbatch (2002).

The configuration of each model is determined mainly by the namelist input (see section 3.11).
The nested models (child domains) will receive their initial surface and open boundary conditions
from the main model (mother domain), no forcing file has to be supplied for child domains. The
namelists are read at the start of the integration from a file called “namelist.spflame XXX” where
XXX denotes the number of the domain starting with zero for the mother domain. It is therefore
possible to supply different mother/child domains with different setups. The mother/child setup
and the region of the nested child is set as well by namelist variables (see section 3).

Each domain is integrated on different processors (PE’s), communication between domains is
done via calls of the MPI library. In addition, each domain can be horizontally decomposed and
the decomposed areas are then integrated by several PE’s. The decomposition of each domain
can be set via namelist variables “n pes i” and “n pes j”. The actual distribution of all PE’s
(N) to the domains and the number of the domains (M) are given by command line parameters
to the executable (here called spflame.x):

mpirun -np N spflame.x M “PE’s for first domain” “PE’s for second domain” ...

Note that all MPI–application have to be launched with the command “mpirun”, which is part
of the standard MPI distribution.
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3 Namelist variables

A sample file with all namelists containing all variables with their default values can be found
in the file “./doc/sample namelist”. All variables are listed in this section in groups with their
default values and a short explanation; types of the variables are made obvious. Note that all
namelists listed here are read at the start of the integration from a file called “namelist.spflame XXX”
where XXX denotes the number of the domain starting with zero for the mother domain. Note
also that in many cases, the default values of the namelist variables have to be changed.

In general, the output (to standard out) of the model written as text during runtime is quite
detailed and should be carefully checked for each new configuration to insure that the specific
configuration is actually met by the namelist input. The text output might as well be useful to
understand sources of errors, when the model stops (or crashes) at some point.

3.1 Namelist spflame basic

This is a list of the most basic model parameter.

• imt = 0
Zonal extent in grid points of the domain. For child domains, this variable will be calcu-
lated internally and overwritten.

• jmt = 0
Same for the meridional extent.

• km = 0
Same for the vertical.

• nt = 0
Number of tracers. Must be greater or equal two.

• n pes i = 0
Number of processors in zonal direction

• n pes j = 0
Same for meridional direction

• time step= 0.0
The time step in seconds. For child domains this variable will be set internally and
overwritten.

• runlen = 0.0
The length of the integration in days. For child domains this variable will be set internally
and overwritten.
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3.2 Namelist spflame general setup

Here is a list of namelist switches (almost all Fortran logicals), determing the general setup
of the model. These switches are contained in the namelist spflame general setup . Note that
using the default values, many forcing and configuration files have to be provided for the in-
tegration, which may by unnecessary for simple (idealized) configurations. In this case it is
more convenient to use (and change) the template routines for the model configuration in file
“./model/setup template.F”.

• enable freesurf =.false.
If true, MOM-3’s explicit free surface formulation (Griffies et al., 2001) will be used,
otherwise the rigid lid formulation.

• enable beta plane =.false.
If true, a β-plane approximation will be used. The reference value for the Coriolis param-
eter is given by beta plane j0 .

• beta plane j0 =1
Reference grid point (in y-direction) for β or f -plane.

• enable f plane =.false.
If true, a f -plane approximation will be used. The reference value for the Coriolis param-
eter is given by beta plane j0 .

• enable rotated grid =.false.
If true, a spatially dependent Coriolis factor will be used, necessary for a rotated grid.
There has to be a file called “glat.dta” containing the (real) latitudes of the unrotated
grid on each (rotated) grid point. This file is generated using the preparation routines
described in section 5.

• enable simple grid =.false.
If true, a simple grid will be used. The definition of the grid can be set in file “./model/setup
template.F” in subroutine “grid template”. If false, there has to be a file called “grid.dta”,
prepared beforehand with the grid information. See section 5 for the generation of such a
file.

• enable simple topo =.false.
Same for topography and file “kmt.dta” (if option partial cell is set, a file called “htp.dta”
will be also referenced). See subroutine “kmt template” (and “htp template”) in file “./
model/setup template.F”.

• enable simple initial cond =.false.
Same for initial conditions, file names are “temp.mom.ic”,“salt.mom.ic” and “tracer XXX.
ic” for passive tracers. See section 5 for the generation of these files. See subroutine
“init cond template” in file “./model/setup template.F” for simple initial conditions.
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• enable simple sbc =.false.
Same for surface boundary conditions. See subroutine “sbc template” in file “./model/
setup template.F”. The filenames are set in subroutine “sbc initialize” in file “model/
bc io.F”. See section 5 how to generate the forcing files.

• enable simple obc =.false.
Same for open boundary conditions, filenames are “obc north.mom”, “obc west.mom”
defined in subroutine “obc initialize” in file “model/bc io.F”. These files contain informa-
tion of restoring values for tracers at the open boundary and prescribed streamfunction
or surface height. Note that there are currently no templates for simple open boundary
conditions, they are simply given by the standard radiation conditions for which no in-
formation has to be given. Related variables are enable obc north, enable obc south, ...
restore TS obc north , ... and prescribe psi obc north, ...

• enable sponge =.false.
Same for arbitrary number of sponge zones, filenames are “sponge XXX.mom”, defined in
subroutine “sponge initialize” in file “model/bc io.F” (XXX stands for the number of the
sponge zone). See below section 5 how to generate files related to the sponge layers.

• enable simple spg =.false.
In case that no files should be read but template routines should be modified, this vari-
able can be set to true. Corresponding template routines can be found in file “./model/
setup template.F”.

• cyclic =.false.
If true, zonally cyclic boundary conditions are applied. Note that cyclic and eastern or
western open boundary conditions are incompatible.

• read restart =.false.
If true, the model will read a restart file “restart XXX.dta“ in which XXX stand for the
number of the sub domain. If false, initial conditions will be read or constructed.

3.3 Namelist spflame hor mixing setup

This group of namelist switches (all Fortran logicals) controls the configuration of parameteri-
zations for unresolved processes of horizontal nature (mostly of diffusive kind). No attempt is
made to explain these parameterizations, but references are given if possible.

• enable diffusion harmonic = .false.
If true, tracers will be mixed harmonically along geopotentials. Note, that the diffusivity
is given by variable “ah”.

• enable diffusion biharmonic = .false.
Same for biharmonic diffusion, diffusivity is given by “ahbi”.
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• enable diffusion isoneutral = .false.
If true, tracers will be mixed along isopycnals using the revised scheme by Griffies (1998).
Related variables are “ahisop”, “athkdf”, “ahsteep”, “slmx”, “del dm” and “s dm”.

• enable diffusion isopycnic = .false.
Same but using the original Redi/Cox scheme (Redi, 1982) for isopycnal diffusion and
bolus advection velocities. Related variables are the same as above, however “ahsteep” is
not used.

• enable friction harmonic = .false.
If true momentum will be mixed harmonically. Viscosity is given by “am”.

• enable friction biharmonic = .false.
Same but for biharmonic friction, related variable is “ambi”.

• enable friction cosine scal = .false.
Scale “am” and “ambi” with cosine of latitude.

• enable diffusion cosine scal= .false.
Same for “ah” and “ahbi”, but not for isoneutral/isopycnal diffusivities.

3.4 Namelist spflame vert mixing setup

This group of namelist switches (all Fortran logicals) controls the configuration of parameteriza-
tions for unresolved processes of vertical nature (mostly of diffusive kind). No attempt is made
to explain these parameterizations, but references are given if possible.

• enable implicit vert diff = .false.
If true vertical diffusion will be treated semi–implicitly. No related variables. This scheme
will be needed in case of large vertical diffusivities.

• enable implicit vert fric = .false.
Same for vertical friction.

• enable const vert mixing = .false.
If true constant vertical diffusivities and viscosities will be used. Related variables are
“kappa h” and “kappa m”. Note that at open boundaries constant values will always be
used.

• enable cgh vert mixing = .false.
If true vertical diffusivity will be calculated following Cummins et al. (1990). Related
variables are “cgh vdcfac” (first entry), “diff cbt cut” and “diff cbt back”.

• enable cgh vert momentum mixing = .false.
If true same scheme will be used for momentum. Related variables are “cgh vdcfac”
(second entry), “visc cbu cut”,“visc cbu back” and “wndmix”.
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• enable cgh impl convection = .false.
If true Cummins et al. (1990) vertical mixing scheme will treat unstable stratification by
a very large diffusivity. Related variable is “diff cbt cut”.

• enable kpp vert mixing = .false.
Not yet implemented. Not a good idea anyway.

• enable expl convection = .false.
If true, unstable stratifications will be mixed with an explicit scheme by Rahmstorf (1993).
Note that this scheme is quite expansive on vector machines.

• enable impl convection = .false.
If true, unstable stratifications will be mixed by using a very high vertical diffusivity. Use
this option with constant vertical mixing only. Related variable is “diff cbt cut”.

• enable ktmix = .false.
If true, a Kraus Turner type slab mixed layer model (Sterl and Kattenberg, 1994) will be
used for wind stirring. It depends on the use of the explicit convection scheme. Related
variables are “effwind” and “z scale”.

• enable tkemix = .false.
If true, a TKE closure by Gaspar et al. (1990) will be used to calculate vertical diffusivity
and friction. This scheme handles also unstable stratifications. Related variables are not
less than “C eps”, “C kappa”, “C tke”, “tke min”, “tke min surf”, “tke surf fac”, “nmxl”
, “diff cbt cut”, “diff cbt back”, “visc cbu cut” and “visc cbu back”.

3.5 Namelist spflame advection scheme

This group of namelist switches (all Fortran logicals) specifies the type of advection schemes
used for the advection of tracers. The default setting leads to the use of the standard 2nd order
centered difference scheme.

• enable quicker advection =.false.
If true, the Quicker advection scheme (Farrow and Stevens, 1995) is used for all tracers
instead of centered differences.

• enable 4th advection =.false.
If true, a 4th order advection scheme is used for all tracers instead of centered differences.

• enable fct advection =.false.
If true, the FCT advection scheme (Gerdes et al., 1991) is used for all tracers instead of
centered differences. Note, that this one is the most expansive (in terms of CPU time) but
the only one which is positive definite.
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• enable upstream advection =.false.
If true, the simple but highly diffusive upstream advection scheme (Molenkamp, 1968) is
used for all tracers instead of 2nd order centered differences. Note that this scheme is
highly diffusive.

• enable flux delimiter =.false.
If true, advective and biharmonic diffusive fluxes will be limited for passive tracers (Lafore
et al., 1998), to obtain a positive definite advection scheme. This option can be used in
combination with the other schemes. Note that passive denotes a tracer which do not
affect density.

3.6 Namelist spflame sbc setup

See also section 3.2 for switches concerning surface boundary configurations.

• enable icemask=.false.
If true, a zero order ice-model will be used. Cooling is permitted only if sea surface
temperature is above the freezing point. The other surface tracer fluxes are masked in the
same way as the heat flux, while the momentum fluxes are not altered.

• enable salt flux sbc =.false.
If true the model will use a fixed (virtual) salt flux instead of the usual restoring condition
for sea surface salinity. Prepare the file “sss flux.mom” in that case with the preparation
routines.

• enable shortwave sbc =.false.
If true, the model will read a file “qsol.mom” in “model/bc io.F” which have to generated
before with the prep-routines. For that case, shortwave solar radiation is penetrating
below the first model level. Related parameters are “efold1 shortwave” “efold2 shortwave”
and “rpart shortwave” accounting for the double–exponential penetration profile of the
radiation.

• rpart shortwave = 0.58

• efold1 shortwave = 35.0e0

• efold2 shortwave = 23.0e2
A fraction of “rpart shortwave” of the shortwave radiation penetrates exponentially with
a length scale of “efold1 shortwave” the rest with “efold2 shortwave”.
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3.7 Namelist spflame obc setup

At the lateral boundaries of the model domain, open boundary formulations following Stevens
(1990) can be used, instead of a solid wall. This group of namelist switches and variables controls
the specific configuration.

• enable obc north =.false.
If true, an open boundary will be used at the northernmost latitude. See also “en-
able simple obc”.

• enable obc south =.false.
Same for the south.

• enable obc east =.false.
Same for the east

• enable obc west =.false.
Same for the west

• restore TS obc north =.false.
If true, temperature and salinity will be restored to data at northern open boundary. This
is both for inflow and outflow conditions.

• restore TS obc south =.false.
Same for the south.

• restore TS obc east =.false.
Same for the east

• restore TS obc west =.false.
Same for the west

• prescribe psi obc north =.false.
If true a barotropic streamfunction profile will be prescribed at the northern open boundary
in case of a rigid lid, or a profile of sea surface height for the explicit free surface formulation.
Otherwise a radiation condition will be applied. Note that prescribing a (time varying)
value for the streamfunction at the open boundary is not strictly correct; the same holds
for the radiation condition. This error is, however, ignored.

• prescribe psi obc south =.false.
Same for the south.

• prescribe psi obc east =.false.
Same for the east

• prescribe psi obc west =.false.
Same for the west
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• enable obc south sponge =.false.
If true a biharmonic sponge layer will by implied at the southern open boundary in
which the biharmonic friction is scaled according to variables “obc south sponge width”,
“obc south sponge scale” and “obc south sponge fac”. Note that the sponge layer can
only work if biharmonic friction is enabled.

• enable obc south sponge harm =.false.
Same but here the harmonic (instead of biharmonic) friction is scaled using the same
variables.

• enable obc south sponge diff =.false.
Together with biharmonic or harmonic viscosity, scale also (z–level) diffusivity in the same
manner.

• enable obc north sponge =.false.
Same as “enable obc south sponge” but for the northern open boundary. Scaled according
to variables “obc north sponge width”, “obc north sponge scale” and “obc north sponge fac”.

• enable obc north sponge harm =.false.
Same but here the harmonic (instead of biharmonic) friction is scaled using the same
variables.

• enable obc north sponge diff =.false.
Together with biharmonic or harmonic viscosity, scale also (z–level) diffusivity in the same
manner.

• obc south sponge width = 45
Biharmonic sponge at southern open boundary, see code (in file model/gridtopo.F) for a
definition.

• obc south sponge scale = 6.0
Same

• obc south sponge fac = 10.0
Same

• obc north sponge width = 45
Biharmonic sponge at northern open boundary, see code (in file model/gridtopo.F) for a
definition.

• obc north sponge scale = 6.0
Same

• obc north sponge fac = 10.0
Same
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3.8 Namelist spflame blue setup

This group of namelist switches and variables controls the setup for the semi–prognostic method
as recently proposed by Sheng et al. (2001) and Eden and Greatbatch (2002) (refer to both
papers for a discussion of the methods).

• enable blue = .false.
If true the original semi–prognostic method be will be used, as described by Sheng et al.
(2001).

• enable blue smooth = .false.
If true (and either “enable blue” or “enable blue mean” is also true) the smoothed semi–
prognostic method (Eden and Greatbatch, 2002) will be used. Related variable is “is-
mooth blue”.

• enable blue tapered = .false.
If true (and either “enable blue” or “enable blue mean” is also true), the tapered semi–
prognostic method of Eden and Greatbatch (2002) will be used. Can be used in combina-
tion with “enable blue smooth”. Related variable is “ilook blue”.

• enable blue const = .false.
If true (and “enable blue” is also true), constant forcing will be added to momentum
instead of flow–interactive forcing of the original semi–prognostic method. This is the
corrected–prognostic method of Eden and Greatbatch (2002) and incompatible with “en-
able blue smooth”, “enable blue tapered” and “enable blue mean”.

• enable blue mean = .false.
Enables the mean semi–prognostic method, see Eden and Greatbatch (2002). Can be used
in combination with enable blue smooth and “enable blue tapered”, but is incompatible
with “enable blue”.

• enable blue simple = .false.
Enables simple configuration for a semi–prognostic model, instead of reading files.

• ilook blue =1
Length scale in grid points for the horizontal smoothing (moving average) of the difference
of climatological density and model density for the semi–prognostic method (Eden and
Greatbatch, 2002).

• ismooth blue=2
Length scale in grid points for boundary tapering of the tapered semi–prognostic method
(Eden and Greatbatch, 2002).
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3.9 Namelist spflame bbl setup

This namelist input sets up the Bottom Boundary Parameterization (BBL) by Beckmann and
Döscher (1997).

• enable bbl = .false.
If true, the Bottom Boundary Parameterization (BBL) by Beckmann and Döscher (1997)
will be used. Related variables are “ah sigma” and “ah sigma min”.

• enable bbl advection = .false.
If true, BBL will be used for advective fluxes.

• enable bbl diffusion = .false.
If true, BBL will be used for diffusive fluxes. Related variables are “ah sigma” and
“ah sigma min”.

• ah sigma = 1.e8
Diffusivity inside the BBL in cm2/s.

• ah sigma min = 1.e1
Minimal diffusivity inside the BBL in cm2/s.

3.10 Namelist spflame solver

These varaiables are needed for the poisson solver for the rigid lid version of the code.

• eps solver=1.e8
Epsilon criterion for the Poisson solver. Basin-wide integral of error in Sv m2t−1. Con-
vergence of iteration is reached, when the “error” of the solution is less than eps solver.

• max itts solver=500
Maximum number of iterations for the solver. If convergence is not reached according to
the above given epsilon criterion, integration will stop.

3.11 Namelist spflame nesting setup

The following namelist variables control the specific configuration for nested models. If there is
only one domain (no nested models) the default values of the namelist variables are sufficient for
the integration. The concept of nested models is outlined in section 2.3. To control the message
passing between the sub domains, each domain becomes an index, starting with 1 for the main
domain, which is always present, and increasing subsequently for the child domains.
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• mother = -1
Index for the mother domain of the present domain. A value of -1 means that the present
domain have no mother domain. A value greater than zero is the index of the corresponding
mother domain.

• nr childs = 0
Number of child domains of the present domain. If zero there are no children.

• childs = (0,0,0,0,...)
List of indices of the child domains of the present domain. The list should be as long as
“nr childs”.

• zoom fac = 0
Horizontal zoom factor of the present domain, with respect to the horizontal resolution of
the mother domain. The factor (an integer) must be greater than 1 and odd.

• is zoom = 0
Horizontal T-grid point in mother domain of westernmost point of the present domain.

• ie zoom = 0
Same for easternmost point

• js zoom = 0
Same for southernmost point

• je zoom = 0
Same for northernmost point

• zoom fac k = 1
Vertical zoom factor with respect to the vertical resolution of the mother domain. Can be
one, i. e. no enhanced vertical resolution in child domain, but must be odd.

• topo smooth iterations = 1
Number the iterations for smoothing the topography passed from the mother domain to
the present domain. 1 is a good value. If mother = -1, no effect.

3.12 Namelist spflame mixing parameters

This is a list of model parameters, which have to be supplied for the use of the parameterizations
of unresolved processes, as configured in section 3.3 and section 3.4.

• ambi = 2.e19
Biharmonic viscosity in cm4/s.

• ahbi = 2.e19
Biharmonic diffusivity in cm4/s.
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• ah = 2.e7
Harmonic diffusivity in cm2/s.

• am = 1.e8
Harmonic viscosity in cm2/s.

• ahisop = 1.e7
Isopycnal diffusivity in cm2/s.

• athkdf = 1.e7
Thickness diffusivity in cm2/s, used for the parameterization of the bolus velocity (Gent
et al., 1995).

• ahsteep= 1.e7
Harmonic diffusivity in cm2/s used in case of too steep isopycnal slopes. Only used by
isoneutral scheme of Griffies (1998).

• slmx = 1.e-2
Condition for too steep slopes of isopycnals (no units). It gives the maximal allowed slope
of isopycnals. In case of too steep slopes, ”ahisop” and ”athkdf” are tapered to zero
according to a tanh(slope)–rule.

• del dm = 4.e-3
Transition for the tanh(slope)–rule. No unit but slope is meant. For slopes greater than
del dm, tapering will be effective.

• s dm = 1.e-3
Half width scaling for this tanh(slope)–rule. No unit but slope is meant.

• kappa m = 10.0
Constant vertical viscosity in cm2/s. This value is also used at the open boundaries.

• kappa h = 0.3
Constant vertical diffusivity in cm2/s. This value is also used at the open boundaries.

• cgh vdcfac = (1.e-3,1.e-2)
First entry gives the proportionality factor to the inverse of the square root of the Brunt-
Vaisaelae frequency for the vertical diffusivity used in the vertical mixing scheme by Cum-
mins et al. (1990). Second entry for viscosity.

• diff cbt cut = 4.0
Maximal value for vertical diffusivity in cm2/s. Values greater than diff cbt cut are set to
diff cbt cut. This variable is used both by the scheme by Cummins et al. (1990) and the
TKE closure scheme by Gaspar et al. (1990).

• visc cbu cut = 10.0
Same for vertical viscosity.
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• diff cbt back = 0.1
Minimal value for vertical diffusivity in cm2/s. Values less than diff cbt back are set to
diff cbt back.

• visc cbu back = 1.0
Same for vertical viscosity.

• wndmix = 50.0
Minimal value of vertical viscosity for the first model level in cm2/s to simulate high fre-
quency wind stirring in the Ekman layer, used by the vertical mixing scheme by Cummins
et al. (1990).

• cdbot =0.0
Coefficient for a quadratic bottom drag rule.

• tidaloff=0.0
A constant offset to this bottom drag due to tidal friction effects.

• effwind = 0.8
Coefficient of effectiveness of wind forcing in the Kraus Turner type scheme.

• z scale = 5000.0
Vertical scale length of TKE dissipation in cm in the Kraus Turner type scheme.

• C eps =0.7
Coefficient for the Kolmogoroff dissipation in the TKE closure scheme by Gaspar et al.
(1990).

• C kappa =0.1
Coefficient for vertical eddy viscosity in the TKE closure scheme.

• C tke =30.0
Coefficient for vertical TKE viscosity in the TKE closure scheme.

• tke min =4.e-2
Background value of TKE in cm2/s in the TKE closure scheme.

• tke min surf =1.0
Background value of TKE at the surface in cm2/s in the TKE closure scheme.

• tke surf fac =3.0
Coefficient for input of TKE at surface in the TKE closure scheme.

• nmxl =2
Flag for different bounds of mixing length (l) in the TKE closure scheme. 0 means l is
bounded by distance to surface/bottom, 1 means l is bounded by vertical scale factor and
2 means |lz| is bounded by level thickness.
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3.13 Namelist spflame diagnostic setup

Finally, the remaining namelist switches and variables are controlling what is written out to
data files during the model integration. Note that for some of the diagnostics, the amount of
data written out is also controled by local cpp options in the respective source code (which can
by found in subdirectory “./diagnostics”. Note also that the format of output data (binary or
NetCDF) depends on cpp options set in the file “./include/options.inc”.

• enable snapshots = .false.
If true, snapshots will be written with frequency “snap int” to NetCDF file “snap file”.
Works only if compiler option “netcdf diagnostics” is enabled otherwise no snapshots can
be written. Use “enable daily averages” instead. To specify the data to be written out,
local preprocessor directives in file “diagnostics/diag snap.F” can be set.

• enable timeseries = .false.
If true, time series of certain variables will be written with frequency “snap int” to either a
NetCDF file called “anna.cdf” or a binary files called “anna.dta”, dependend on the com-
piler option “netcdf diagnostics”. To specify the data to be written out, local preprocessor
directives in file “diagnostics/diag timeseries.F” can be set.

• enable ts monitor = .true.
If true, the model time, the number of time step, basin-wide averaged kinetic energy and
tracer contents will be written to standard out at each time step.

• enable overturning = .false.
If true, the meridional overturning streamfunction will be written with frequency “snap int”
to file “over file”, either in binary or in NetCDF format. Binary files can be converted to
NetCDF with the program “cv vsf.F” (make converter).

• enable heat tr = .false.
Same for meridional tracer transports. Written to file “heat tr file” with frequency “snap int”
Binary files can be converted to NetCDF with the program “cv heat tr.F” (make con-
verter).

• enable diag press = .false.
Same for surface and bottom pressure. Written to file “diag press file” in frequency
“snap int”. Binary files can be converted to NetCDF with the program “cv press.F”
(make converter).

• enable diag float = .false.
Float diagnostics, written to file “diag float file” Binary files can be converted to NetCDF
with the program “cv float.F” (make converter). The deployment region and the number
of floats, however, is set directly in the code (see file diagnostics/diag floats.F).
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• enable annual averages = .false.
If true, annual averages will be calculated by summation of model variables (which are
currently baroclinic velocity, tracers, surface tracer and momentum fluxes and barotropic
mode) at each time step during the integration and written at the end of each year to a file
named “averages XXX yYYYYmMMdDD.[dta/cdf]” for which XXX denotes the number
of the domain, YYYY the year (starting with year 1900), MM the month and DD the
day. Note that the file can be either in NetCDF format or binary format, depending on
the compiler directive “netcdf diagnostics”. Note also that a normal calendar with equal
years will be used for the integration. Binary files can be converted to NetCDF with the
program “cv ave.F” (make converter).

• enable seasonal averages = .false.
Same for seasonal averages. A season is a 3 month interval, the first season is starting at
Jan. 1. and is ending at Mar, 31.

• enable monthly averages = .false.
Same for monthly averages. Note that the length of the months differ.

• enable daily averages = .false.
Same for daily averages. Note that daily and annual averages are the only averages with
equal periods.

• enable seasonal variances = .false.
Same for seasonal variances. Currently, only velocity variances are calculated in order to
obtain estimates of eddy and mean kinetic energy.

• enable monthly variances = .false.
Same for monthly variances.

• enable show island map = .false.
If true, a map of the islands and island coast lines, used by the Poisson solver, will be
shown at standard out.

• enable diag blue = .false.
Diagnostics to diagnose correction term of the semi–prognostic methods. A file “blue aver
ages XXX yYYYYmMMdDD.dta” will be written out at the end of each month. Only
binary format is used here. The file can be converted with “cv blue.F” afterwards.

• enable stability tests = .false.
If true, CFL criteria and Peclet numbers will be checked during the integration for each
time step. Results are written to standard out. Note that this is very expansive and should
be only used for testing purposes.

• enable diag zonal = .false.
Same for zonally averaging related diagnostics. Written to file ”zonal 000 yXXXXmXXdXX.cdf”
with daily frequency. This is experimental.
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• snap int = 0.0
Inverse frequency in days for writing various diagnostics.

• snap file = ’snap.cdf’
Filename for NetCDF snapshots.

• over file = ’vsf.cdf’
Filename for meridional streamfunction time series.

• heat tr file = ’heat tr.cdf’
Same for meridional tracer transports.

• diag press file = ’diag press.cdf’
Same for surface and bottom pressure.

• diag float file = ’float.cdf’
Same for floats.

• eps surf press = 1.e-4
Epsilon criterion for Poisson solver when solving for the diagnostic surface pressure.

4 Sub directories and files

All executables are copied to the sub directory “./bin”, after compiling. In sub directory
“./configure”, architecture depend Makefiles can be found. One of them have to be included
in the other Makefiles during compilation, as described above. In “./doc” you may find this
documentation and a sample namelist file containing all namelist parameter with their default
values. The source code files are organized in several sub directories which are “./model”,
“./diagnostics”, “./misc modules”, “./misc tools”, “./mpp”, “./cv cdf” and “./prep”,
listed and described in detail in the following sections.

4.1 ./model

The main model routines are contained in this sub directory. Here is a list of the source code
files with a brief description of their content.

• spflame module.F
Contains the main module for the model integration, including the namelist input (see
below) and all major working arrays. Since in this module almost all important global
variables and arrays are defined, an attempt was made to document the variables declara-
tion more extensively than usual. However, note that all variables are explicitly declared
throughout the code, i. e. no implicit declaration, as possible in Fortran was made in any
source code file. Note also that this module, including the declared arrays, is initialized
with the initialization routine in this file.
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• driver.F
Contains the main program and the main loop. Note that this is a good starting point to
examine and understand the subsequent processing of the main subroutines.

• setup.F
Contains routines dealing with all things which have to be done before the actual model
integration. These routines call all initialization routines of the various modules.

• tracer.F
Contains the subroutine ”tracer” which performs one time step for temperature, salinity
or passive tracers.

• clinic.F
Contains the subroutine ”clinic” which performs one time step for velocities (excluding
the barotropic mode).

• adv vel.F
Contains routines dealing with advection velocities and advective fluxes. Several different
advection schemes are implemented.

• rigid lid.F
Contains routines necessary to solve for the barotropic streamfunction (in case of a rigid
lid). The actual Poisson solver is contained in congrad.F.

• freesurf.F
If there is a free surface instead of the rigid lid, this file contains routines to explicitly time
step the barotropic velocities (Griffies et al., 2001). In that case, no Poisson equation is
solved. Note that there are, however, yet unsolved problem with regard to open boundaries.

• vert mixing.F
Routines dealing with vertical mixing and the vertical boundary conditions. There are
several parameterization for vertical mixing and friction which are enabled or disabled via
namelist input.

• dens.F
Contains a module exporting several routines dealing with the equation of state. Note that
these routines are written for best performance on vector architectures. However, they can
also be used for other architectures without large loss of performance. Note also that the
actual approximation to the equation of state used during the integration depends on the
preprocessor options in the file “include/options.inc”.

• passive tracer.F
All routines which deal with an additional passive tracer should be located here. Imple-
mented are so far CFC11 and CFC12, a pelagic ecosystem model (NPZD) plus oxygen and
dissolved inorganic carbon.
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• npzd model.F
Routines implementing the pelagic ecosystem model (NPZD) plus (optional) oxygen and
dissolved inorganic carbon.

• cfc module.F
Routines dealing with CFC as passive tracers.

• co2 module.F
Routines dealing with dissolved inorganic carbon as passive tracers, mainly the calculation
of sea surface pCO2.

• bc io.F
Contains three modules dealing with IO operations for and temporal interpolation of exter-
nal data needed for surface boundary condition, open boundary conditions and restoring
zones (sponge layers), respectively. For the temporal interpolation and data handling
procedures to minimize memory allocation, routines from time manager.F are used.

• isopycnic.F
Module implementing isopycnal diffusion of tracer and the bolus advection velocity (Gent
et al., 1995). The scheme is using essentially the original code of Redi (1982). Note that
the vertical dependence of the isopycnal diffusivity and thickness diffusivity is hard wired
in the code at the moment and have to be changed therein.

• isoneutral.F
Module implementing the revised scheme for isopycnal diffusion and bolus velocity by
(Griffies, 1998).

• bbl module.F
Module implementing the Bottom Boundary Layer (BBL) parameterization following
Beckmann and Döscher (1997).

• setup template.F
Contains several template routines, which can be used for simple and/or idealized setups
to avoid complicated configuration procedures before the model run. See also namelist file.

• blue.F
Two modules which deal with the semi–prognostic method as described by Sheng et al.
(2001) and Eden and Greatbatch (2002).

• implvmix.F
This file contains two subroutines implementing implicit vertical mixing and friction, split-
ted in vector and scalar code.

• congrad.F
Contains routines for a Poisson solver (conjugate gradient method), needed for the calcu-
lation of the time tendency of the barotropic streamfunction and the diagnostic surface
pressure.
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• stevens obc.F
Two routines dealing with the open boundary formulation for tracers.

• gridtopo.F
Routines to generate grid and topography related variables.

• checks.F
This file contains one routine which deals with various (but far from complete) checks of
setup and parameters.

4.2 ./diagnostics

All the model code which deals with diagnostic operations is located here. Here is a list of the
source code files with a brief description of their content. Note that for some of the diagnostics,
the amount of data written out is controled by namelist input but also by local cpp options in
the respective source code (which can by found in subdirectory “./diagnostics”.

• diag.F
Contains the main diagnostic routine which initialize and calls other routines which imple-
ment the various diagnostics. Provides also a routine implementing the time step monitor.

• diag snap.F
Contains initialization and actual routine to write snapshots of various model variables to
a NetCDF file. Binary snapshot output is not implemented. Note that the amount of data
written out, which can be quite extensive, is controlled by local preprocessor directives in
the file.

• diag timeserie.F
Module implementing a mean to write out time series of model variables, similar to snap-
shots but more restricted in size and both in NetCDF and binary format (which can be
converted to NetCDF afterwards with cv anna.F). Note that the amount of data written
out is controlled again by local preprocessor directives in the file.

• diag averages.F
Module for averaging and writing out model variables in either NetCDF or binary format
(which can be converted to NetCDF by cv ave.F afterwards). At the moment only velocity,
tracers, surface fluxes and external mode are averaged. Averaging periods can be days,
months, seasons or years depending on corresponding namelist variables.

• diag variances.F
Module for averaging some second order moments in either NetCDF or binary format
(which can be converted to NetCDF by cv var.F afterwards). At the moment only velocity
is averaged (for estimates of mean and eddy kinetic energy). Averaging period is either
one month or one season (3 months).
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• diag heat tr.F
Routines to diagnose (zonally and vertically integrated) northward tracer transports. Un-
like all other routines in this sub directory (which are called in diag.F) this one is called
inside tracer.F since the advective fluxes of tracer are needed. Format is either NetCDF
or binary (which can be converted to NetCDF by cv gyre.F afterwards). Note that the
binary format corresponds to the original format of MOM-2.

• diag over.F
Routines to calculate and write the meridional (overturning) streamfunction. Format is
either NetCDF or binary (which can be converted to NetCDF by cv vsf.F afterwards).
Note that the binary format corresponds to the original format of MOM-2.

• diag press.F
Routines to diagnose the surface pressure (in the rigid lid formulation) and the hydrostatic
pressure at the bottom (vertical integral of density). Format is either NetCDF or binary
(which can be converted to NetCDF by cv press.F afterwards).

• diag stab.F
Routine calculating some numerical stability conditions, such as CFL and Peclet Number.
The output is to standard out only at the moment.

• diag float.F
Module to calculate neutrally buoyant floats. Output format is either NetCDF or binary
(which can be converted to NetCDF by cv float.F afterwards). The deployment region for
the floats have to be set in the source code file. Note that it is also possible to calculate
the float in an offline mode.

• diag netcdf.F
Some routines useful to deal with the NetCDF library.

• diag blue.F
Diagnostic routines concerning the semi–prognostic method.

• diag zonalave.F
experimental

• diag diapycnic.F
experimental

• diag barbi.F
experimental

4.3 ./mpp

All code dealing with parallel processing using the MPI library.
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• sub mpif.h
Simple include file, used by all other routines in this sub directory. It is needed to wrap float
and integer definitions of the MPI standard to proper formats on the various platforms.
It will also include the include file “mpif.h” of the MPI standard distribution.

• mpp basic.F
Basic routines, necessary for message passing inside the decomposed region of the domain.

• mpp.F
Some more elaborated routines concerning message passing between regions inside one
domain.

• domain exchg.F
Routines used for message passing between the domains.

4.4 ./misc modules

This sub directory contains all modules and utility files which are of a more general purpose and
which do not depend on other modules.

• c helpers.c
Contains a single C routine which re–directs the standard output to a file. This can be
necessary to prevent confusion, since all processors of one MPI application are sharing the
same standard output. Here, the re–direction is currently used only for the nested sub
domains, since for each domain, only the first processor (rank zero) is usually writing to
standard output. Note that the interface for calling this routine from Fortran subroutines
depends on the specific compiler.

• island modules.F
This module contains island and island perimeter mapping routines, which generate infor-
mations concerning the island location and path integrals which are needed for the Poisson
solver solving for the barotropic streamfunction. The original code was taken from GFDL
MOM2.1. The module exports only two subroutines, named isleperim and showmap. The
first essentially takes the topography information performs some checks on the landmask
and generates some arrays containing the island path integrals and a map of the landmask.
The latter prints the map of the landmask.

• time manager.F
This modules supplies routines for the time management. It is meant to handle simple time
stepping schemes with an Euler forward or backward time step between several leapfrog
time steps. Additionally, it supplies routines for interpolation between time averages of
forcing functions driving the model, as e.g. surface boundary conditions. It depends on
the module time type.F. Note that this module has to be initialized using the initialization
subroutine of this module.
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• time type.F
This module supplies a type definition for time and is taken from MOM3.0. It is possible
to use different types of calendars. The default calendar is a year with 365 days (no leap
years) and months of different length. This module is used by time manager.F.

• timing.F
This module supplies simple subroutines for measuring the elapsed user cpu time between
different calls of these routines. Note that the appropriate routine which gives the actual
elapsed cpu time depends on the platform.

• util.F
Here are all routines collected which do not fit into other categories but are of general
purpose. Among them are routines for reading command line parameters, manipulating
character variables, finding free IO units and performing special open statements. There
are also routines for interpolation, box averaging and extrapolation of data, used during
the preparation of forcing files as described in section 5.

4.5 ./misc tools

Some useful stand alone programs of general purpose. Can be compiled with “make tools” in
main directory and found in subdirectory “./bin” after compilation.

• nc ave.F
To average a variable over several netcdf files, e.g. averaging 12 monthly means to an
annual mean. Syntax can be infered by typing “nc ave.x” only.

• nc cat.F
To concatenate a netcdf variable in several files along the last dimension of the variable
(usually the time coordinate). Syntax can be infered by typing “nc cat.x” only.

• nc merge.F
To merge netcdf variables in several files in one file. Syntax can be infered by typing
“nc merge.x” only.

• sum var.F
Simple program which sums files written (in binary format) by subroutine diag variances.
Useful to sum monthly averages to seasonal or annual averages. Syntax can be infered by
typing “sum var.x” only.

• nc util.F
Collection of useful subroutines, used by nc ave.F, etc.
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4.6 ./cv cdf

Some useful stand alone programs converting binary output of a model integration to NetCDF
files. Can be compiled with “make converter” in main directory and found in subdirectory
“./bin” after compilation.

• cv anna.F
To convert the output of diag timeserie.F.

• cv ave.F
To convert output of diag averages.F.

• cv var.F
To convert output of diag variances.F.

• cv gyre.F
To convert output of diag heat tr.F.

• cv press.F
To convert output of diag press.F.

• cv vsf.F
To convert output of diag over.F.

• cv float.F
To convert output of diag float.F.

• cv blue.F
To convert output of diag blue.F.

• cv blue mean.F
To convert some diagnostic output of written in file blue.F, which is, as an exception, not
done in code contained in sub directory ./diagnostics.

4.7 ./prep

Code which generates forcing files for model integrations. See also section 5.

• prep main.F
Main program for preparation of forcing files.

• prep grid.F
Contains routines to generate a (B) grid. Called by prep main.F.

• prep topo.F
Contains routines to generate the model topography grid. Called by prep main.F.
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• prep out.F
Contains routines to write interpolated forcing data and configuration information to a
NetCDF file. Called by prep main.F.

• prep template.F
Contains template routines (by including other source code files, see below) to read from
binary or netcdf files containing necessary datasets, such as topography, hydrographic
climatologies, etc. The template routines are called in prep main.F.

• prep template topo.F
Contains the template routines to read topography dataset. This file is included by
prep template.F.

• prep template ic.F
Contains the template routines to read datasets containing (monthly) climatologies for the
tracers used for the intial conditions, restoring zones, salinity restoring and the the open
boundaries. Included by prep template.F.

• prep template tau.F
Same for the wind stress.

• prep template sflx.F
Same for the surface tracer flux formulations.

• prep template obcpsi.F
Same for the values of the streamfunction applied at the open boundaries.

• prep template sponge.F
Contains routines to specify restoring zones for tracer (sponge layers) in the model domain.
Called by prep main.F and included in prep template.F.

• prep fold.F
A program to fold the model domain. See section 5 for details.

• prep killfilt.F
A program to “Killworth–filtering” (Killworth, 1996) some forcing data. See section 5 for
details.

• prep to bin.F
A program to read the information contained in the NetCDF file written by prep.F, etc
and to convert to binary files used during the model integration. See also section 5 for
details.

• map.m
Matlab script to manipulate model topography.

• prep blue const.F
A program to convert data necessary for a semi–prognostic odel version (corrected–prognostic).
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5 Preparation of forcing and setup files

5.1 Overview

The simplest and easiest way to run the model is by using (and changing) the template setup
routines, given in file “model/setup template.F”, together with the proper setting correspond-
ing namelist variables of section 3.2. No special forcing and setup files have to be generated
beforehand in that case. However, a more realistic setup demands the preparation of some setup
and forcing files before the model run. This can be done using preparation routines, which are
shortly discussed in this section.

The main program prep.x constructs a grid, a topography mask, surface and boundary forcing
as well as initial conditions. Datasets of realistic topography, climatological hydrography and
forcing functions have to be provided by the user, but can be supplied on request. The raw data
will be interpolated on the model grid and written to a NetCDF file by the main preparation
routine. Afterwards, the model grid can be folded3 to reduce the extent of the model domain
using the program fold.x. Additionally, some of the forcing file can be ”Killworth–filtered”
(Killworth, 1996) using the program killfilt.x. For the actual model run, the forcing and setup
files have to be converted from NetCDF format to binary files with to bin.x. The preparation
routines can be build by typing “make prep routines”. Four executables are generated: prep.x,
fold.x, killfilt.x and to bin.x. They can be found in the sub directory “./bin”.

The program “prep.x” is build in the sub directory “./prep” from several routines (see section 4).
The program reads a namelist from its standard input, called “prep” (note that the command
to execute the program looks therefore like “./prep.x < namelist file”). The default values for
this namelist are given in Table 1. All variables are subsequently discussed in the course of
this section. However, prep.x is meant to be run in two steps: The first step is to generate
the grid and the raw topography mask. In a second step the forcing functions are generated.
The raw topography should be manipulated between both steps somehow. The prevent the
program to proceed to the forcing function generation, the logical stop after topo can be set to
true. The program will write grid and topography (together with the undiscretized topography)
to a NetCDF file named “forcing.cdf” to be viewed and to binary files “new grid.dta” and
“new kmt.dta” as well. The binary file for the topography is subject to manipulation between
both steps. A Matlab script called “map.m” in sub directory “prep” is provided to manipulate
the topography interactively. It works currently for Matlab version 5.3. If the topography
appears ready, the binary files are copied to files called “old grid.dta” and “old kmt.dta”. Setting
the namelist switches stop after topo to false and read grid topo to true, these “old” files are
read by the program and overriding the initial interpolation results. Afterwards the program is
proceeding to the interpolation of the forcing functions.

The text output written to standard out by “prep.x” (and the other programs) during the
execution is rather detailed and one should carefully read it, to check whether the program is

3 “Folding” a model domain means, moving parts of the ocean zonally to land covered regions, where possible,
and using cyclic zonally boundary conditions.
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nxlon no default
nylat no default
nzdepth no default
x lon no default
dx lon no default
y lat no default
dy lat no default
z depth no default
dz depth no default
isotropic false
flame vert grid false
cyclic false
gltnp no default
glnnp no default
gltpp no default
glnpp no default
topo smooth ntimes 0
kmt min 4
enable obc north false
enable obc south false
enable obc east false
enable obc west false
read grid topo false
stop after topo false
rotated grid true
enable blue false
enable blue mean false
number tr 2

Table 1: Table with namelist ”prep”
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actually setting up the desired configuration, reading the correct data files, etc. If something
goes wrong, e. .g. during the interpolation of the raw data on the model grid, the text output
of “prep.x” is as well useful to understand the reason for the failure.

5.2 Setting up the grid

The grid generation follows the method described in Pacanowski (1995) (Chapter 5 therein).
Here, this procedure is briefly reviewed. The integers nxlon, nylat and nzdepth in the namelist
“prep” specify the number of regions (plus one) with different zonal, meridional or vertical
grid spacing. The real (vector) variables dx lon(nxlon), dy lon(nylat) and dz depth(nzdepth)
specify the different grid spacings at the border of each region, in degrees longitude, latitude
and centimeters, respectively. The positions of the borders of the regions are given by the real
vectors x lon(nxlon), y lat(nylat) and z depth(nzdepth) in the same units as above.

A simple example: To construct an equidistant grid, one would set nxlon, nylat and nzdepth
to 2, dx lon, dy lon and dz depth to the desired zonal, meridional and vertical resolution and
x lon, y lat and z depth to the starting and ending positions of the grid. Clearly, it is possible
to define regions with different resolution by setting the integers to values greater than two and
the remaining variables to appropriate values. Note, that it is not always possible to contructed
the desired grid. The program will report the reason and stop in that case.

Additionally, the horizontal grid can be rotated using the (real) variables gltnp, glnnp, gltpp and
glnpp, where the first two variables denote the longitude and latitude of the rotated north pole
in the normal geographical coordinates, and the latter two the coordinates of the prime point,
determing the zeroth meridian. Using gltnp=90.0, glnnp=90.0, gltpp=0.0 and glnpp=0.0 means
no rotation at all The file “glat.dta” which is needed for the model run, if using a rotated grid,
will be generated at the end of the procedure, see below.

Setting the logical isotropic to true, leads to an “isotropic” grid, which means that the latitudinal
grid spacing matches the longitudinal grid spacing (in e. g. centimeters) approximately. Note
that this option makes less sense on a rotated grid. Setting the logical cyclic means applying
cyclic zonal boundary conditions, useful for a global grid.

5.3 Setting up the topography

To interpolate a topography mask onto the generated grid it is necessary to have a dataset
of the realistic depths of the oceans. In file “./prep/prep template topo.F” two routines deal
with reading such a dataset: “read rose dim” and “read rose”. The first is called by the main
program to determine the zonal and meridional extent of the dataset, the latter to read the actual
data. Currently these routines read a NetCDF file containing the ETOPO5 (1988) dataset and
it is assumed that the NetCDF file is named “./data/etopo5/etopo5.cdf” relative to the local
directory in which “prep.x” is exectuted. The user may want to modify these routines for his
needs.
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The dataset is interpolated (or box averaged) horizontally and dicretized vertically onto the
model grid. Some namelist parameters apply to this procedure: kmt min is an integer and
denotes the minimal value of vertical levels for shallow regions (4 is safe, 2 is adventurous, 1
is not possible). topo smooth ntimes denotes the number of smoothing operations applied to
the topography mask. Note that a smooth topography is mandatory to obtain smooth model
results. The smoothing operation uses a simple 2–dimensional symmetric 3–point filter based on
the weighting 1/4, 1/2, 1/4. Specifying the logicals cyclic, enable obc north, enable obc south,
enable obc east and enable obc west appropriately, the program is able to handle the open bound-
ary or cyclic boundary conditions correctly for the topography. The generated topography mask
must be most likely edited. Use the Matlab script “map.m”.

5.4 Setting up the forcing functions

Having successfully generated a grid and a topography, datasets for the forcing functions are
needed. First a monthly climatology of temperature and salinity, covering the model domain, has
to be provided. This climatology is needed for the initial conditions as well as for sponge layers
and open boundary conditions (it may serve also for the (restoring) boundary condition for salin-
ity). In the file “./prep/prep template ic.F” routines “read ic” and “read ic dim” provide the
informations to the main program as before for the topography. Several versions of both routines
have been implemented in “./prep/prep template ic.F”. Which one is actually selected depends
on preprocessor settings in the file “./prep/prep template.F” (first section). Currently, reading
from three different datasets is implemented: A global (1x1deg) monthly mean climatology by
Levitus and Boyer (1994), a high resolution (1/4x1/4 deg) monthly mean climatology given by a
combination of the datasets of Levitus and Boyer (1994) and Boyer and Levitus (1997) spanning
the Atlantic domain only, and a global, annual mean climatology as given by WOCE SAC. It
is assumed that the file can be found directories named “./data/WOA94”,”./data/WOA9497”
and “./data/SAC” respectively, relative to the local directory in which “prep.x” is exectuted.
For more details can be refered in “./prep/prep template ic.F”. These routines may have to be
modified by the user. Note that a temporary binary file “ts.dta” is generated by subroutine
“prep ic” in “prep main.F” during the interpolation of the initial conditions.

Then, the same procedure is needed for the wind stress datasets (see routines “read dims tau”
and “read tau” in file “prep template tau.F” and corresponding preprocessor options in “prep template.F”)
for the surface tracer fluxes (see routines “read tr” and “read dims tr” in file “prep template sflx.F”
and corresponding preprocessor options in “prep template.F”) and the friction velocity4 (see rou-
tines “read ustar” and “read dims utar” in file “prep template tau.F” and corresponding pre-
processor options in “prep template.F”). Currently, reading from a variety of different monthly
mean and daily or monthly mean time series of wind stress climatologies is implemented, the
same holds for the surface fluxes.

4Friction velocity denotes the input of turbulent kinetic energy at the surface and is needed for the TKE
closure scheme by Gaspar et al. (1990) and the Kraus Turner mixing scheme.
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After the generation of initial conditions and surface boundary conditions the program tries
to set up sponge layers and forcing function for open boundary conditions using the pre-
viously interpolated fields for monthly climatological temperature and salinity. Setting up
sponge layers appears highly model dependent, thus everything is included in a separate file
“./prep/prep template sponge.F”. Several examples are given in that file how to set up a sponge
layer, depending on the prepsocessor options in “prep template.F”. The open boundary condi-
tions need one last input: the prescribed monthly mean values for streamfunction (or free surface
elevation). Again template routines are given in “./prep/prep template obcpsi.F” for that pur-
pose.

5.5 Folding, “Killworth–filtering” and conversion to binary files

Compiling and running the executable “prep.x” supplemented by the namelist input at the
second step of the procedure, will produce a NetCDF file called “forcing.cdf”. The model domain
can now be folded with the program “fold.x” build from the source code file “prep/prep fold.F”.
Note that is not possible to fold, if there are eastern or western open boundaries or if the model
resides on a rotated grid. The program “fold.x” is fully automatic, but can take a single command
line parameter, denoting the new zonal model extent in grid points. If this parameter is not
given the program will determine and use the smallest possible value for the zonal extent. Any
data and information of the unfolded grid contained in “forcing.cdf”, is transfered be “fold.x”
to the folded grid and written to a file called “forcing folded.cdf”.

Is is possible to “Killworth–filter” (Killworth, 1996) some of the data in “forcing folded.cdf”
with the program “killfilt.x” build from the source code file “prep/prep killfilt.F’. This is mainly
done for the wind stress forcing, but review the source code file.

Finally, at the end of the procedure, the program “to bin.x” generated from the source code con-
tained in “prep/prep to bin.F” will convert the data contained now in the file “forcing folded.cdf”
to several binary files, which are read by the model at the start and during each model inte-
gration. Note that the binary format of the resulting forcing files depends now on the specific
system.
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