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1 Introduction

1.1 Summary

pyOM (Python Ocean Model) is a numerical circulation ocean model which was written
for educational purpose. It is not meant to be a realistic ocean model, but a simple and
easy to use numerical tool to configure and to integrate idealized numerical simulations.
The main assumptions or restrictions are

• the neglection of any thermodynamic equation, i.e. the density budget is considered
only, although passive tracers and also salinity can be included

• the Boussinesq approximation in its form applicable to the ocean, i.e. mass con-
servation is replaced by volume conservation and buoyancy perturbations act in the
gravity term of the Navier-Stokes equation only

• the rotating coordinate system is Cartesian together with a β-plane approximation.

On the other hand, fully non-hydrostatic situations as well as large-scale oceanic flows can
be considered. Many idealised experiments and examples are preconfigured and can be
easily chosen and modified using two alternative configuration methods based on Fortran90
or Python. Prerequisites for the installation is a Fortran 90 compiler and for the Fortran
front end the NetCDF-library (since IO is realized mainly using the NetCDF format).
For the Python front end, the numerical module numpy is required and a graphical user
interface is provided. Both version are based on identical Fortran90 code which is vectorised
and for which a moderate parallelisation is realized based on the MPI-library to enhance
performance.
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1.2 Navier-Stokes equations

The Navier-Stokes equations, the density conservation equation and the mass (or volume)
conservation equation within the Boussinesq approximation in a rotating Cartesian coordi-
nate system are solved numerically in pyOM. These equations are given here for reference

∂u

∂t
= Fu −

∂p

∂x
(1)

∂v

∂t
= Fv −

∂p

∂y
(2)

ε
∂w

∂t
= εFw −

∂p

∂z
− b (3)

∂b

∂t
= −∇ · (ub) +Kh∇2

hb+Kv
∂2b

∂z2
(4)

0 = ∇ · u (5)

with the (scaled) pressure p = p∗/ρ0, where ρ0 is a constant reference density, the scaled
density b = gρ/ρ0 (corresponding to negative buoyancy) and

Fu = fv − fhw − u · ∇u+ Ah∇2
hu+ Av

∂2u

∂z2
− Ahbiha∇4

hu− Avbiha
∂2

∂z2
∂2u

∂z2
(6)

Fv = −fu− u · ∇v + Ah∇2
hv + Av

∂2v

∂z2
− Ahbiha∇4

hv − Avbiha
∂2

∂z2
∂2v

∂z2
(7)

Fw = fhu− u · ∇w + Ah∇2
hw + Av

∂2w

∂z2
− Ahbiha∇4

hw − Avbiha
∂2

∂z2
∂2w

∂z2
(8)

The Boussinesq approximation is made, i.e. a constant reference density ρ0 is used ev-
erywhere except for the gravity force in the vertical momentum equation. Note that f
is related to the vertical component of the Coriolis force while and fh to the horizontal
component of the Coriolis force. Note also that the parameter ε is set to one, and that the
hydrostatic approximation can be made by setting ε = fh = 0. Since a rotating Cartesian
coordinate system is used, a β-plane approximation is employed as well. That means that
the Coriolis parameters f and fh are given by

f = 2Ω sinφ0 +
2Ω

r
y cosφ0 , fh = 2Ω cosφ0 −

2Ω

r
y sinφ0 (9)

where r denotes Earth’s radius, φ0 a reference latitude and Ω the rotational frequency of
the earth.

1.3 Discretisation

Variables are discretised on a Arakawa C-grid. Pressure p and buoyancy are centered in a
tracer box. On the eastern, northern and upper sides of these boxes, the zonal, meridional
and vertical velocities are placed. The horizontal grid arrangement is shown in Fig. 1.
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Figure 1: C-grid

Advective fluxes of density across the eastern cell border, FE
i,j,k and the corresponding

fluxes across the meridional and vertical boundary can be computed as

FE
i,j,k = ∆x∆z ui,j,k(bi,j,k + bi+1,j,k)/2 (10)

FN
i,j,k = ∆x∆z vi,j,k(bi,j,k + bi,j+1,k)/2 (11)

F T
i,j,k = ∆x2wi,j,k(bi,j,k + bi,j,k+1)/2 (12)

Note that this discretisation represents the standard second order scheme, but that other
higher order discretisation are possible. It is also obvious that diffusive fluxes can be
discretised in a similar way. In any case, however, the convergence of these fluxes leads to
a change in density content in the grid cell

(∆x2∆z)
∂

∂t
bi,j,k = (FE

i,j,k − FE
i−1,j,k) + (FN

i,j,k − FN
i,j−1,k) + (F T

i,j,k − F T
i,j,k−1) (13)

It is clear that fluxes of density across the boundaries must be set to zero. For momentum,
free-slip or no-slip boundary conditions can be used.

The temporal discretisation is explicit (except for vertical diffusion, see below) us-
ing a so-called leapfrog time stepping for the advective terms as default (other advection
schemes are possible) and a Robert’s time filter to eliminate the numerical mode. The
two-dimensional Poisson equation for the surface pressure (or implicit free surface, see be-
low) and the three-dimensional equation for the non-hydrostatic pressure are solved using
a simple preconditioned conjugate gradient solver.
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2 Installation

This installation procedure assumes a Unix system and that all libraries and compilers are
available. For both the Fortran and Python front ends of pyOM you first need to follow
the following two steps:

• Make a new directory where the model code shall be placed. That directory is called
dir hereafter.

• Extract the tar-archive containing pyOM in dir.

2.1 Fortran front end

The following steps are needed to use the Fortran front end of pyOM

• Edit the platform dependent options in the file dir/for_src/Makefile. See below
for further comments.

• Change directory to dir/for_config and type make <model>, where <model> is set
to one of the example Fortran files in dir/for_src (excluding the suffix .f90).

• Run the executable <model>.x in dir/bin, investigate the output and modify the
model setup.

The platform dependent options in the file dir/for_src/Makefile contain information
about the path to netcdf library and header files in the variable CDFFLAGS and informa-
tion for the path to MPI library and header in MPIFLAGS. The name of the Fortran 90
compiler (usually gfortran or ifort) should be given by the variable F90. Some examples
for common platforms are given in dir/for_src/Makefile. When the MPI library is
not available, a non-parallel version of the Fortran front end of pyOM can be build by
make target=without_mpi <model>. The netcdf library is, however, mandatory at the
moment.

2.2 Python front end

For the Python front end of pyOM, a number of Python modules are needed. The numer-
ical module numpy is mandatory, the modules mpi4py, scipy, Tkinter, matplotlib and
netcdf4 or Scientific.IO.netcdf are optional. For the Python front end of pyOM, it
is necessary to compile an extension module for Python from the Fortran subroutines and
modules. This can be done by executing python setup.py install --install-lib=.

in the directory dir. Two extension modules will be build automatically, one with and
one without MPI support. For the former, it is necessary to provide the path to the MPI
library and include header files in the configuration file dir/setup.py.

When the extension module dir/pyOM_code.so is build, the Python front end can be
used by executing python <model>.py in the directory dir/py_config, where <model>

5



denotes one of the example configurations in the directory dir/py_config. The extension
module dir/pyOM_code_MPI.so contains MPI support and is loaded automatically when
available. The examples in dir/py_config are based on different classes, which differ
by using additional Python modules. The basic class is contained in the Python mod-
ule pyOM.py and should work as long as one of the extension modules have been built.
Extensions of this basic class are given by

• pyOM_cdf.py which adds netcdf based IO using the Python modules netcdf4 or
Scientific.IO.netcdf.

• pyOM_mat.py which adds Matlab file format IO, using the Python module scipy

• pyOM_gui.py which adds a graphical user interface using Tkinter.py and plotting
during model execution using matplotlib. Note that parallel execution is not pos-
sible using this class.

The classes are imported by each of the examples in dir/py_config.

3 Directory structure and model configuration

3.1 Directory structure

The numerical code is distributed over several directories. Here is a list of these directories
and a short characterisation of its content. All references to files or directories are relative
to the directory in which pyOM is located.

• ./for_src: Fortran subroutines used by both Fortran and Python front end

• ./py_src: Python modules and extension modules

• ./py_config: configuration examples of Python front end

• ./for_config: configuration examples for Fortran front end

• ./doc: contains documentation

• ./bin: contains executable of Fortran front end after successful compilation

The top-level program of the Fortran front end is ./for_src/pyOM.f90. Here, the work
flow of the main routines can be seen. The basic class for the Python front end is in
./py_src/pyOM.py, which does essentially the same as ./for_src/pyOM.f90. The main
module ./model/pyOM_module.f90 is available to both front ends and contains all impor-
tant parameters and model variables. A short description of each model variable can be
found in this file.
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3.2 Model configuration

The model configuration is realized by template subroutines (Fortran front end) or template
methods (Python front end) for which specific realisations are supplied for each specific
experiment. The idea is to keep the whole model configuration in a single file containing
all relevant routines. Specific examples can be found in the directory ./py_config and
./for_config. Template Fortran routines and Python methods are named identical. A
list of them is given here.

• set_parameter:

sets all important fixed model parameters, like domain size, resolution, etc. The
configuration is specified mainly by logical switches, implementing mixing parame-
terisation, hydrostatic approximation, etc. This routine/method is called only once
before allocating the model variables.

• set_coriolis:

sets the (vertical and horizontal) Coriolis parameter. This routine/method is only
called once during the model setup.

• initial_conditions

sets the initial conditions. This routine/method is only called once during the model
setup.

• topography

set the topography. This routine/method is only called once during the model setup.

• boundary_conditions

set the surface boundary conditions. This routine/method is called for each time
step.

• restoring_zones

sets the interior sources and sinks for density. This routine/method is called for each
time step.

• momentum_restoring_zones

sets the interior sources and sinks for momentum. This routine/method is called for
each time step.

• tracer_sources

set interior sources and sinks for the passive tracer. Also sets the surface boundary
conditions. This routine/method is called for each time step.

The Fortran template routines have to be present in any case, even when they are empty.
For the Python front end, only the methods which are actually changed are necessary.
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3.3 Running and restarting the model

After successful compilation of the Fortran front end, the executable can be found in the
directory ./bin. The executable can be run directly in ./bin or in any other directory.
No further files are needed for a model integration. For the Python front end, the location
of the module files have to be specified. This is done in the first line of each example.

3.3.1 Restarting Fortran front end

The model integration will start from the initial conditions specified in the configuration
templates and will integrate over a specified time period. After that period the integration
stops and a restart file restart.dta will automatically be written by the Fortran front
end, containing the last two time steps of each model variable. This restart file will be read
automatically when the model is restarted. Note that the Fortran front end will always try
to read a restart file, which then overides the initial conditions specified in the template
configuration routines. If there is no restart file present, the Fortran front end will use the
initial conditions. Note also that at the end of each integration, any existing restart file
will be overwritten.

3.3.2 Restarting Python front end

Methods are implemented for the Python front end for reading and writing the restarts in
the same format as the Fortran front end. In the GUI-version, the restarts can be written
at any time.

3.4 Sample configurations for Fortran front end

This is an incomplete list of sample configurations which can be found in the directory
./for_config.

3.4.1 Non-hydrostatic configurations

• kelv_helm1.f90

This is a simple two-layer system with a large shear between the layers to demonstrate
Kelvin-Helmholtz instabilities as in Eden et al. (2009). The domain is periodic in x
and y, 14 m deep, 16 m long and there are no surface fluxes at the top or bottom.
The initial conditions are two layers of equal thickness with a buoyancy difference
corresponding to about 10 K moving with 1 m/s to the east and west. At the layer
interface a small disturbance in buoyancy is introduced such that in the simulation
Kelvin-Helmholtz instability will show up. The domain is two-dimensional, i.e. in
the x-z plane. The variable fac can be increased in order to increase the spatial (and
temporal) resolution. For fac=1.0 the spatial resolution is 25 cm in each direction.

• internal_wave1.f90
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This is a setup to demonstrate internal wave beams. The domain is two-dimensional,
i.e. in the x-z plane and in the center a wave maker is placed. The variable fac

can be increased in order to increase the spatial (and temporal) resolution. The
background state in terms of a stratification is prescribed using enable_back_state

(see also below).

3.4.2 Hydrostatic configurations

• barbi_exp1.f90

Experiment DISTURB in Olbers and Eden (2003), i.e. a large scale buoyancy
anomaly propagating westward in an ocean basin. The background state is pre-
scribed using enable_back_state (see also below).

• barbi_exp2.f90

Experiment RIDGE in Olbers and Eden (2003), i.e. adjustment of a wind-driven gyre
over topography resembling the North Atlantic Ridge to the flat-bottom solution.
The background state is prescribed using enable_back_state (see also below).

• wardlemarshall1.f90

First experiment in Wardle and Marshall (2000), i.e. a reentrant channel driven by
eastward wind stress profile.

• jets1.f90

A wide channel model with relaxation at the side walls and interior damping as in
Eden (2010), simulating strong eddy-driven zonal jets.

• eady1.f90

The classical Eady problem (Eady, 1949). A narrow channel on an f -plane with pre-
scribed stratification and vertically sheared background zonal flow. The background
state is prescribed using enable_back_state (see also below).

• acc1.f90

A model with a channel attached to a closed basin, similar to the Southern and
Atlantic Ocean as in Viebahn and Eden (2010). There is wind forcing over the
channel part and buoyancy relaxation driving a large-scale meridional overturning
circulation.

• THC1.f90

Thermohaline circulation using temperature relaxation and fixed freshwater flux.
Salinity is implemented using a passive tracer (impacting the surface boundary con-
dition for density only) using the switch enable_diag_tracer (see below).
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3.5 Sample configurations for Python front end

to be continued

4 Parameterisations and boundary conditions

In this section, the most important sub-grid-scale parameterisations and boundary con-
ditions which are used in the model and also other important aspect of the numerical
implementation are listed and briefly discussed. Note that all references to files containing
code are relative to the directory in which pyOM is located. It is also assumed that all
parameters are given in SI units.

4.1 Rigid lid and surface pressure

To obtain the pressure in the Boussinesq system of equations, it is necessary to solve a
diagnostic relation for the pressure. In case of the hydrostatic assumption, this relation
simplified to one of the surface pressure only. The default treatment of the pressure is to
assume a rigid lid, i.e. w = 0 at z = 0, which is briefly explained here.

It is useful to split the pressure in a hydrostatically balanced part and deviation from
that. Within the hydrostatic approximation, the pressure p is given by∫ 0

z

∂

∂z
p dz′ = p(0)− p(z) = −

∫ 0

z
b dz′ , p = p(0) +

∫ 0

z
b dz′ ≡ ps(x, y) + ph(x, y, z) (14)

where ps(x, y) denotes the surface pressure and ph =
∫ 0
z b dz

′ the hydrostatic pressure. The
surface pressure can be found from an elliptic equation given below. In general, however,
the non-hydrostatic pressure p′ will also add to give the full pressure p

p(x, y, z) = ps(x, y, ) + ph(x, y, z) + εp′(x, y, z) (15)

The non-hydrostatic pressure p′ can be found by taking divergence of momentum equation

∂

∂x
Fu +

∂

∂y
Fv +

∂

∂z
Fw −∇2

h(ph + ps) = ∇2p′ (16)

A diagnostic equation for the surface pressure ps can be found in case of a rigid lid from
vertical integration of the momentum equation and the continuity equation

∇ · h∇ps =
∂

∂x

∫ 0

h
(Fu − (ph + εp′)x)dz +

∂

∂y

∫ 0

h
(Fv − (ph + εp′)y)dz (17)

Note that it is also possible to relax the rigid-lid assumption and to use a linearised free
surface formulation.

10



4.2 Implicit free surface

An alternative surface boundary formulation to the rigid lid is given by the implicit free
surface, which is activated by the switch enable_free_surface in the template config-
uration subroutine/method set_parameter. Using the implicit free surface option, the
surface pressure is replaced by the free surface η. The free surface equation is given by

∂

∂t
η +∇h ·

∫ η

−h
uhdz ≈

∂

∂t
η +∇h ·

∫ 0

−h
uhdz = 0 (18)

where the free surface η is related to the surface pressure by ps = gη. Discretisation of the
time dependency yields

ηn+1 + 2∆t∇h ·
∫ 0

−h
un+1
h dz = ηn−1 (19)

and with un+1
h = un−1h + 2∆t(F h −∇hp) this gives

∇h · gh∇hη
n+1 − εηn+1 = ∇h ·

∫ 0

−h
(F h −∇hph −∇hp

′)dz − εηn−1 (20)

with ε = (2∆t)−2.

4.3 Harmonic friction and diffusivity

Harmonic friction acting on the horizontal velocity (u, v) and harmonic diffusivity act-
ing on the buoyancy (b) is always present and controlled by the horizontal viscosity a_h,
the vertical viscosity a_v, the horizontal diffusivity k_h, and the vertical diffusivity k_v.
Default values are zero. Note that in case of a non-hydrostatic simulation, the harmonic
vertical and horizontal viscosity is also acting on the vertical velocity (w). Note also that
all viscosities and diffusivities should be specified in the template configuration subrou-
tine/method set_parameter.

4.4 Biharmonic friction and diffusivity

Biharmonic horizontal friction acting on the horizontal velocity (given e.g. by abiha∇2u in
Eq. (6)) and biharmonic horizontal diffusion acting on buoyancy can be implemented by set-
ting the logical variable enable_biharmonic_friction and enable_biharmonic_diffusion

respectively to a true value in the configuration subroutine/method set_parameter. The
horizontal biharmonic viscosity and diffusivity are given by ahbi and khbi respectively.
Default values are zero.

Vertical biharmonic friction and diffusion can be implemented by setting the logical
variable enable_vert_biha_friction and enable_vert_biha_diffusion respectively to
a true value in the configuration subroutine/method set_parameter. The vertical bihar-
monic viscosity and diffusivity are given by avbi and kvbi respectively. Note that in case
of a non-hydrostatic simulation, the biharmonic vertical and horizontal viscosity is also
acting on the vertical velocity (w).
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4.5 No-slip or free-slip boundary condition

Since the spatial discretisation is realized using a C-grid (see also section 1.3) it is natural to
implement zero diffusive fluxes of momentum across boundaries of the model. This choice is
equivalent a free-slip boundary condition and the default choice. No-slip lateral boundary
conditions, assuming zero tangential velocities at the lateral boundaries implying a diffusive
momentum flux across the lateral boundaries, are implemented setting the logical variable
enable_noslip to a true value in the configuration subroutine/method set_parameter.
Note that for the upper and lower boundaries free-slip conditions are always used. Note
also that the no/free-slip conditions are implemented for harmonic and biharmonic friction.

4.6 Other boundary and initial conditions

The rigid-lid boundary condition is used as a default but a linearised implicit free surface
formulation can be switched on by setting the the logical variable enable_free_surface

to a true value in the configuration subroutine/method set_parameter. Lateral boundary
conditions are either no-flux boundary condition for buoyancy and passive tracers (and
no/free-slip for momentum as discussed above) or periodic boundary conditions. The latter
can be chosen by setting the logical variables enable_cyclic_x and enable_cyclic_y

to a true value in the configuration subroutine/method set_parameter to apply periodic
boundary conditions in zonal and meridional direction respectively. Surface and eventually
bottom fluxes of buoyancy and momentum can be specified in the configuration subroutine
boundary_conditions and method surface_boundary_conditions The same holds for
the initial conditions and the configuration subroutine initial_conditions and method
setup_initial_cond.

4.7 Bottom and interior friction

Bottom friction can be implemented by setting the logical variable enable_bottom_stress
to a true value in the configuration subroutine/method set_parameter. The inverse
time scale for bottom friction is given by cdbot. Default value is zero. Adding inte-
rior Rayleigh damping is implemented by the switch enable_interior_stress and the
parameter cdint. For the bottom, a no-slip boundary condition is implemented by the
switch enable_bottom_noslip.

4.8 Advection schemes

Although the choice of the advection scheme is not a sub-grid-scale parameterisation,
it strongly affects the dissipation in the model and is therefore discussed here as well.
It is possible to choose between the classical second-order central differences scheme as
the default, the first order upwind schemen, a forth-order accurate central difference
scheme, the Quicker advection scheme, and a second order scheme with superbee flux lim-
iter. They are implemented by setting the logical variables enable_upwind_advection,
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enable_4th_advection, enable_quicker_advection, or enable_superbee_advection

to a true value, respectively, in the configuration subroutine/method set_parameter.
Note that this choice refers to the advection scheme of the tracers (buoyancy, passive tracer,
TKE, etc) but not to the advection of momentum. The advection scheme for momentum is
controlled by the variables enable_4th_mom_advection and enable_quicker_mom_advection,
default is also the classical second-order central differences scheme.

Note that Quicker introduces a certain amount of numerical diffusion on buoyancy,
such that sometimes no additional diffusion is needed in the model simulation. The flux
limited scheme is positive definite and also introduced numerical diffusion. The standard
and the forth-order accurate scheme do not contain any numerical diffusion, but are rather
dispersive. The upwind scheme is very diffusive.

4.9 Hydrostatic approximation and convective adjustment

The hydrostatic approximation is switched on by setting the logical variable enable_hydrostatic
to a true value in the configuration subroutine/method set_parameter. Note that when
using the hydrostatic approximation the three-dimensional Poisson equation for the full
pressure does not have to be solved, such that the model integration can be much faster.

Using the hydrostatic approximation, static instabilities are removed by setting the ver-
tical diffusivity to a large value. This procedure is sometimes called convective adjustment.
Vertical diffusion is calculated with a fully implicit time stepping scheme in that case. Find
the code in the file ./for_src/convection.f90. The model variable containing the large
vertical diffusivity is called K_b and written in the snapshot NetCDF file.

4.10 Meso-scale eddy parameterisation

4.10.1 Residual Mean formulation

The effect of meso-scale eddies on the density budget is given by an additional eddy-driven
advection velocity in the density and tracer equations. In pyOM, this eddy-driven veloc-
ity is implemented using the Residual Mean formulation by Andrews et al. (1987). In
this formulation, the momentum budget is considered as the one for the Residual veloc-
ity, which is given by the sum of the eddy-driven velocity of the Gent and McWilliams
(1990) parameterisation and the normal Eulerian Mean velocity. The necessary modifica-
tion of the momentum budget is given by adding a vertical friction term with viscosity
Kf 2/N2, where K denotes the thickness diffusivity of the Gent and McWilliams (1990)
parameterisation. Since Kf 2/N2 can become large, an implicit formulation for the vertical
friction is necessary, analogous to the parameterisation of convection. The formulation
is implemented in the file ./for_src/vert_friction.f90 and activated by the switch
enable_vert_friction in the template routine/method set_parameter. The thickness
diffusivity k_gm has to be specified in m2/s in set_parameter, its default value is 1000 m2/s.
Further, a minimal threshold for the stability frequency N can be specified in 1/s (variable
n_min) and a maximal threshold for f 2/N2 (fnsqr_max).
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Note that while the buoyancy equation does not need a further parameterisation for
meso-scale eddies using the Residual Mean formulation, in the tracer equations isopyc-
nal diffusion should be added in addition to the eddy-driven velocity using the switch
enable_bolus_isopycnal_diffusion in the template routine/method set_parameter.
The corresponding isopycnal diffusivity is set to k_gm. Further, two parameters control-
ling the maximal allowed isopycnal slopes are specified, iso_slopec and iso_dslope, for
which reasonable default values are prescribed (there is not much reason to modify these
parameters). For the case that tracers like concentrations become negative by spurious
undershooting caused by the isopycnal mixing scheme, it is possible to prevent this by the
switch delimit_tracer_fluxes. Note that the implementation of isopycnal diffusion in
pyOM follows the standard one by Redi (1982), which was shown by Griffies (1998) to be
slightly unstable. Griffies (1998) also suggested a stable scheme, which is, however, rather
complicated and is therefore not implemented.

4.10.2 Bolus velocity

The standard implementation of the eddy-driven velocity and the Gent and McWilliams
(1990) parameterisation can be found in the file ./for_src/bolus_velocity.f90 but is
only available to the Fortran front end. It is is activated by the switch enable_bolus_velocity

in the template routine set_parameter. The thickness diffusivity k_gm has to be spec-
ified in m2/s. Default value is 1000 m2/s. Diagnostic output in form of the vector
streamfunction for the eddy-driven velocity and the thickness diffusivity written to the
NetCDF file bolus.cdf by activating by the switch enable_bolus_diag locally in the
file ./for_src/bolus_velocity.f90. Note that the implementation of the Gent and
McWilliams (1990) parameterisation in pyOM follows the standard one as in Pacanowski
(1995), which was shown by Griffies (1998) to be slightly unstable.

4.11 Large eddy simulations (LES)

to be continued

4.12 Non-linear viscosity

to be continued

4.13 Setting a background state

To add the effect of a prescribed background state use the switch enable_back_state.
Zonal or meridional background can be implemented by the switches enable_back_zonal_flow
and enable_back_meridional_flow. This background state is given by a stationary field
of buoyancy and zonal or meridional flow (but not meridional and zonal flow) and is defined
by the configuration subroutine initial_conditions and method setup_initial_cond.
Density, pressure and velocity predicted by the model are perturbations on the specified
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background state for this formulation. Note that it is important that the background state
is balanced with respect to the underlying equations. Some examples are given in the
examples.

5 Diagnostic output

5.1 Fortran front end

For each time step, the time and the number of iterations of the two- and three-dimensional
Poisson solver are written to standard output (i.e on the screen). More complex diagnostic
output is written by the Fortran front end in NetCDF format following usual conven-
tions. The output can be easily visualised by e.g. the free software ferret available at
http://ferret.wrc.noaa.gov/Ferret.

5.1.1 Snapshots

Snapshots of the model variables are written by the Fortran front end subsequently to a
NetCDF file pyOM.cdf. Any existing file of this name will be overwritten during model
start. The frequency of the output is controlled by the variable snapint in the configuration
subroutine set_parameter. The value of snapint gives the number of second between
subsequent snapshots written to pyOM.cdf.

5.1.2 Passive tracer

The contemporary simulation of one or several passive tracer can be enabled by the
switch enable_diag_tracer. Initial and surface boundary conditions and relaxation zones,
sources and sinks, etc of the passive tracer are specified in template subroutines. Output
is written to the NetCDF file tracer.cdf with frequency given by snapint in the config-
uration subroutine set_parameter.

Note that at the beginning of the simulation, a file tracer_restart.dta will be read
if it exists, which contains the last two time steps for the passive tracers from a proceeding
simulation with the same configuration. At the end of each simulation, the restart file
tracer_restart.dta will be overwritten.

5.1.3 Lagrangian particles

This diagnostic is only available to the Fortran front end. The contemporary simula-
tion of a number of Lagrangian particles (following dx/dt = u) can be enabled by the
switch enable_diag_particles. Initial distribution and total number of the particles
are specified locally in the file ./for_src/particles.f90. Output is written to the
NetCDF file float.cdf with frequency given by snapint in the configuration subroutine
set_parameter.
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Note that at the beginning of the simulation, a file restart_float.dta will be read if
it exists, which contains the last two time steps for the passive tracers from a proceeding
simulation with the same configuration. At the end of each simulation, the restart file
restart_float.dta will be overwritten.

5.1.4 Zonal averages

This diagnostic is only available to the Fortran front end. Zonal average diagnostic can
be enabled by the switch enable_diag_zonalave. Several local switches are also located
in the file ./for_src/zonal_averages.f90 defining the specific zonally averaged output.
Output is written to the NetCDF file zonal_ave.cdf with frequency given by snapint in
the configuration subroutine set_parameter.

5.1.5 Time averages

This diagnostic is only available to the Fortran front end. Time average diagnostic can be
enabled by the respective switch enable_diag_timeave. Several local switches are also
located in the file ./for_src/time_averages.f90 defining the specific output. Output
is written to the NetCDF file time_ave.cdf with frequency given by snapint in the
configuration subroutine set_parameter.

Note that at the beginning of the simulation, a file restart_ave.dta will be read if it
exists, which contains the unfinished time averages from a proceeding simulation with the
same configuration. At the end of each simulation, the restart file restart_ave.dta will
be overwritten.

5.2 Python front end

The Python front end offers the possibility of online plotting by specifying the method
make_plot. Examples are provided.
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