Sea ice thickness observations for ocean-atmosphere interaction studies

Lars Kaleschke

Vorstellung im Rahmen des Berufungsverfahrens für die W2-Professur "Satellitengestützte Beobachtung des Meereises"

Structure

- Introduction: science plan and motivation
 link between sea ice and permafrost
- How to measure sea ice thickness?
- Sea ice thickness retrieval from SMOS brightness temperature
- Arctic freeze-up case study and validation
- Outlook and conclusion

CryoSat preliminary result of Centre for Polar Observation and Modelling at University College London (2011)

CliSAP-2 Research Topic B-1: Arctic and Permafrost

Roberts et al. (2010), A Science Plan for Regional Arctic System Modelling

- link between sea ice loss and permafrost thawing
- oceanatmosphere heat transfer moderated by sea ice

CliSAP Renewal Proposal

Arctic ice "rotten" to the North Pole

Kaleschke (2012), KlimaCampus press conference on sea ice minimum

(Dave Barber, The Vancouver Sun, 1st Oct 2012)

- Sea ice area dropped to **2.2**×10⁶ km²
- Amount of thin first year ice expected to increase up to 12×10⁶ km² during freeze-up
- Impact on weather and climate
- Future development of Arctic sea ice is highly uncertain

Influence of sea ice loss on surface air temperature (SAT)

Kaleschke (2012, unpublished); University of Hamburg Earth-System-Model Planet-Simulator at T42 resolution, 10 yrs

Energy exchange over sea ice during the cold months

Maykut (1978)

Remote sensing methods for sea ice thickness d

El.mag. induction: d from conductivity

Haas (2000) Altimeter: d from surface elevation (freeboard)

Spreen (2008)

Heat flux: d from surface temperature T_0

$$\frac{k}{d}(T_0-T_f)=C(T_a-T_0)$$

Thermal conductivity k, heat transfer coefficient C, air temperature T_a , freezing temperature T_f Maykut (1987)

Microwave Radiometry: d from emissivity

ESA's Soil Moisture and Ocean Salinity Mission (SMOS)

- Microwave Imaging Radiometer using Aperture Synthesis MIRAS
- 3 arms with 69 antennas:
 Ø 8 m synthetic aperture
- Nadir resolution \approx 35 km
- Swath width 1000 km
- Wavelength λ=21 cm (L-band)
- Multi-angle polarimetric measurements

SMOS is approaching its nominal 3-years life time in November 2012. Thanks to the excellent technical and scientific status of the mission, operations will continue (SMOS Quarterly Status Report, Oct. 2012).

Model for brightness temperature observed at 1.4 GHz

Brightness observed by the satellite:

$$T_{\rm obs}(\boldsymbol{\rho}, \theta) = [(1 - C)\boldsymbol{e}_{\rm sea} T_{\rm sea} + C\boldsymbol{e}_{\rm ice} T_{\rm ice}]\boldsymbol{e}^{\tau} + T_{\rm other} \tag{1}$$

- Ice concentration C
- Temperature of ice/water T
- Atmospheric opacity τ and other "noise" contributions

• Sea ice emissivity:
$$e_{ice}(\epsilon_{ice}, d, p, \theta)$$

Menashi et al. (1993)

- Ice thickness d
- Polarization p
- Incidence angle θ
- Sea ice permittivity: ε_{ice}(V_b) Vant et al. (1978)
- Relative brine volume: $V_b(T_{ice}, S_{ice}, \rho_{ice})$

Baltic: Leppäranta and Manninen (1988); Arctic: Cox and Weeks (1983)

- Sea ice temperature Tice
- Sea ice salinity Sice
- Sea ice density ρ_{ice}

Kaleschke, et al. (2010): A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice, The Cryosphere

Forward and retrieval model

SMOS brightness temperature, 20 October 2010

Sea ice growth estimate from surface air temperature

Anderson (1961)

Cumulative freezing days: $\Theta = \int_0^t (T_f - T_a) dt$ Sea ice thickness, e.g. Lebedev (1938): $d = 1.33\Theta^{0.58}$ [cm] Freezing point of sea water $T_f \approx -1.9^\circ$ C, air temperature T_a from reanalysis (NCEP)

Arctic freeze-up October to December 2010

Arctic freeze-up October to December 2010

Validation with MODIS IR thickness - Kara Sea

MODIS ice thickness derived from ice surface temperature and heat flux estimates

 RMSE: 10 cm; bias: -2 cm pixel-by-pixel correlation: R² = 0.5

MODIS ice thickness provided by M. Mäkynen (FMI)

Sea Ice Thickness from SMOS

Complementarity of SMOS and CryoSat sea ice thickness retrieval

Modified after Kaleschke et al.(2010)

Summary and conclusions

- Sea ice thickness observations are urgently required
- Clear correlation between SMOS brightness temperature and sea ice thickness
- Causality is demonstrated through sensitivity analysis based on a physical emissivity model
- SMOS can be used to retrieve sea ice thickness up to half a meter with 20% uncertainty under ideal cold conditions
- Uncertainties due to changes in temperature, salinity, snow depth and ice concentration
- Preliminary results show interannual ice thickness variability
- SMOS complements altimetric thickness measurements in the thin ice range

Kaleschke, L., X. Tian-Kunze, N. Maaß, M. Mäkynen, and M. Drusch (2012), Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period, Geophys. Res. Lett. Kaleschke, L., Maaß, N., Haas, C., Hendricks, S., Heygster, G., and Tonboe, R. T. (2010): A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice, The Cryosphere

Thank you for your attention!

Acknowledgements

- University of Hamburg: Xiangshan Tian-Kunze, Nina Maaß, Stefan Kern, Anja Rösel, Johannes Lohse, Sebastian Bathiany, Pavan Siligam, David Bröhan, Alexander Beitsch, Amelie Tetzlaff, Meike Demgen, Lisa Schneider, ...
- University of Bremen: Georg Heygster, Marcus Huntemann, Huanhuan Wang, Peter Mills, ...
- FMI: Marko Mäkynen, ...
- DMI: Rasmus Tonboe, ...
- AWI: Stefan Hendricks, Thomas Krumpen, ...
- University of Alberta: Christian Haas, ...
- University of Trier: Günther Heinemann, Sascha Wilmes, Susanne Adams, ...
- NERSC: Laurent Bertino, ...
- ESA: Matthias Drusch, Tania Casal, Susanne Mecklenburg, ...
- Planetary Visions: Philip Eales, Tim Wilkinson, ...

More validation: Transdrift 2012

- Extensive thin ice area have been encountered during the Transdrift campaign in April 2012
- Data still not available due to Russian toll regulations

Retrieval uncertainty under ideal conditions

• $R^2 = 0.95$ for d < 0.5m

 Uncertainty strongly increases for d > 0.4m

Thickness range [cm]	RMSE [cm]
0-10	2
10-30	4
30-40	5
40-50	12

Maximum retrievable ice thickness d_{max}

$$d_{\max} = -rac{1}{\gamma} \ln(rac{\delta}{\mathcal{T}_1 - \mathcal{T}_0})$$

$$T_0 \approx 100$$
 K, $T_1 \approx 245$ K, $\delta \approx 2$ K

- 0.5 m for Arctic and Antarctic freeze-up conditions
- 1.5 m for Baltic
- Less than 0.1 m for melting conditions

Model for observed brightness temperature at 1.4 GHz

Main assumptions

- Specular reflecting surface (Fresnel coefficients)
- Thermodynamic equilibrium (emissivity=1-reflectivity)
- Sufficient variability of sea ice thickness within the footprint (incoherent approach)
- Effective permittivity accounts for vertical temperature gradient
- Volume scattering (air bubbles, brine pockets) can be neglected
- Atmospheric attenuation can be neglected ($\tau < 0.01$)

SMOS and CryoSat2

- CryoSat2 classification based on max-min elevation and waveform
- Large potential for synergistic application of SMOS and CryoSat2

Estimation of retrieval parameters

Different methods to obtain retrieval parameters:

- 1 Forward simulation $T_{\rm obs}(T_{\rm ice}, S_{\rm ice}) \rightarrow T_0, T_1, \gamma$
- 2 Calibration with ice thickness data (model or observation)

$$T_{
m obs}(T_{
m ice}=-7^{\circ}{
m C},\,S_{
m ice}=8~{
m g/kg})
ightarrow\gamma=8.5~{
m m}^{-1}$$

Assumption for retrieval: T_0 , T_1 , γ = constant

Atmospheric response to Summer sea ice loss

Atmospheric GCM forced by present day ocean and sea ice conditions (reference); September and October sea ice removed (experiment).

- Lower tropospheric temperature increase largely limited to the high latitudes
- Substantial change of mid-latitude zonal wind

Confirmation of earlier results (e.g. Newson, 1973).

Results of University of Hamburg Earth-System-Model Planet-Simulator at T42 resolution; 10 year simulation.

Kaleschke (2012, unpublished)

Motivation

Based on data of Jungclaus et al (2010).

Motivation

Based on data of Jungclaus et al (2010).